
Swift
Notes for ProfessionalsSwift™

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Swift™ group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

200+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Swift Language 2 ..
Section 1.1: Your first Swift program 2 ..
Section 1.2: Your first program in Swift on a Mac (using a Playground) 3 ...
Section 1.3: Your first program in Swift Playgrounds app on iPad 7 ...
Section 1.4: Installing Swift 8 ..
Section 1.5: Optional Value and Optional enum 8 ...

Chapter 2: Variables & Properties 10 ...
Section 2.1: Creating a Variable 10 ...
Section 2.2: Property Observers 10 ..
Section 2.3: Lazy Stored Properties 11 ...
Section 2.4: Property Basics 11 ...
Section 2.5: Computed Properties 12 ...
Section 2.6: Local and Global Variables 12 ...
Section 2.7: Type Properties 13 ...

Chapter 3: Numbers 14 ..
Section 3.1: Number types and literals 14 ..
Section 3.2: Convert numbers to/from strings 15 ..
Section 3.3: Rounding 15 ..
Section 3.4: Random number generation 16 ...
Section 3.5: Convert one numeric type to another 17 ..
Section 3.6: Exponentiation 17 ..

Chapter 4: Strings and Characters 18 ...
Section 4.1: String & Character Literals 18 ...
Section 4.2: Concatenate strings 19 ...
Section 4.3: String Encoding and Decomposition 20 ..
Section 4.4: Examine and compare strings 20 ..
Section 4.5: Reversing Strings 21 ..
Section 4.6: Check if String contains Characters from a Defined Set 21 ..
Section 4.7: String Iteration 22 ..
Section 4.8: Splitting a String into an Array 24 ..
Section 4.9: Unicode 24 ..
Section 4.10: Converting Swift string to a number type 25 ..
Section 4.11: Convert String to and from Data / NSData 25 ..
Section 4.12: Formatting Strings 26 ..
Section 4.13: Uppercase and Lowercase Strings 26 ..
Section 4.14: Remove characters from a string not defined in Set 27 ..
Section 4.15: Count occurrences of a Character into a String 27 ..
Section 4.16: Remove leading and trailing WhiteSpace and NewLine 27 ...

Chapter 5: Booleans 29 ..
Section 5.1: What is Bool? 29 ...
Section 5.2: Booleans and Inline Conditionals 29 ..
Section 5.3: Boolean Logical Operators 30 ..
Section 5.4: Negate a Bool with the prefix ! operator 30 ..

Chapter 6: Arrays 31 ...
Section 6.1: Basics of Arrays 31 ...
Section 6.2: Extracting values of a given type from an Array with flatMap(_:) 32 ...

Section 6.3: Combining an Array's elements with reduce(_:combine:) 32 ...
Section 6.4: Flattening the result of an Array transformation with flatMap(_:) 33 ...
Section 6.5: Lazily flattening a multidimensional Array with flatten() 33 ...
Section 6.6: Filtering out nil from an Array transformation with flatMap(_:) 34 ...
Section 6.7: Subscripting an Array with a Range 34 ...
Section 6.8: Removing element from an array without knowing it's index 35 ...
Section 6.9: Sorting an Array of Strings 35 ..
Section 6.10: Accessing indices safely 36 ...
Section 6.11: Filtering an Array 37 ...
Section 6.12: Transforming the elements of an Array with map(_:) 37 ..
Section 6.13: Useful Methods 38 ..
Section 6.14: Sorting an Array 38 ..
Section 6.15: Finding the minimum or maximum element of an Array 39 ...
Section 6.16: Modifying values in an array 40 ...
Section 6.17: Comparing 2 Arrays with zip 40 ..
Section 6.18: Grouping Array values 41 ..
Section 6.19: Value Semantics 42 ..
Section 6.20: Accessing Array Values 42 ...

Chapter 7: Tuples 44 ..
Section 7.1: What are Tuples? 44 ..
Section 7.2: Decomposing into individual variables 44 ..
Section 7.3: Tuples as the Return Value of Functions 45 ...
Section 7.4: Using a typealias to name your tuple type 45 ...
Section 7.5: Swapping values 46 ...
Section 7.6: Tuples as Case in Switch 46 ..

Chapter 8: Enums 48 ...
Section 8.1: Basic enumerations 48 ...
Section 8.2: Enums with associated values 48 ..
Section 8.3: Indirect payloads 49 ..
Section 8.4: Raw and Hash values 50 ..
Section 8.5: Initializers 51 ...
Section 8.6: Enumerations share many features with classes and structures 52 ...
Section 8.7: Nested Enumerations 53 ...

Chapter 9: Structs 54 ..
Section 9.1: Structs are value types 54 ...
Section 9.2: Accessing members of struct 54 ..
Section 9.3: Basics of Structs 54 ...
Section 9.4: Mutating a Struct 55 ..
Section 9.5: Structs cannot inherit 55 ...

Chapter 10: Sets 57 ...
Section 10.1: Declaring Sets 57 ..
Section 10.2: Performing operations on sets 57 ..
Section 10.3: CountedSet 58 ...
Section 10.4: Modifying values in a set 58 ..
Section 10.5: Checking whether a set contains a value 58 ...
Section 10.6: Adding values of my own type to a Set 58 ..

Chapter 11: Dictionaries 60 ...
Section 11.1: Declaring Dictionaries 60 ..
Section 11.2: Accessing Values 60 ..
Section 11.3: Change Value of Dictionary using Key 61 ..

Section 11.4: Get all keys in Dictionary 61 ...
Section 11.5: Modifying Dictionaries 61 ...
Section 11.6: Merge two dictionaries 62 ..

Chapter 12: Switch 63 ..
Section 12.1: Switch and Optionals 63 ...
Section 12.2: Basic Use 63 ..
Section 12.3: Matching a Range 63 ...
Section 12.4: Partial matching 64 ..
Section 12.5: Using the where statement in a switch 65 ...
Section 12.6: Matching Multiple Values 65 ..
Section 12.7: Switch and Enums 66 ...
Section 12.8: Switches and tuples 66 ..
Section 12.9: Satisfy one of multiple constraints using switch 67 ..
Section 12.10: Matching based on class - great for prepareForSegue 67 ..
Section 12.11: Switch fallthroughs 68 ...

Chapter 13: Optionals 69 ..
Section 13.1: Types of Optionals 69 ...
Section 13.2: Unwrapping an Optional 69 ..
Section 13.3: Nil Coalescing Operator 71 ..
Section 13.4: Optional Chaining 71 ..
Section 13.5: Overview - Why Optionals? 72 ..

Chapter 14: Conditionals 74 ...
Section 14.1: Optional binding and "where" clauses 74 ...
Section 14.2: Using Guard 75 ...
Section 14.3: Basic conditionals: if-statements 75 ...
Section 14.4: Ternary operator 76 ...
Section 14.5: Nil-Coalescing Operator 77 ...

Chapter 15: Error Handling 78 ..
Section 15.1: Error handling basics 78 ...
Section 15.2: Catching dierent error types 79 ...
Section 15.3: Catch and Switch Pattern for Explicit Error Handling 80 ..
Section 15.4: Disabling Error Propagation 81 ..
Section 15.5: Create custom Error with localized description 81 ...

Chapter 16: Loops 83 ...
Section 16.1: For-in loop 83 ...
Section 16.2: Repeat-while loop 85 ...
Section 16.3: For-in loop with filtering 85 ..
Section 16.4: Sequence Type forEach block 86 ...
Section 16.5: while loop 86 ...
Section 16.6: Breaking a loop 87 ...

Chapter 17: Protocols 88 ..
Section 17.1: Protocol Basics 88 ...
Section 17.2: Delegate pattern 90 ...
Section 17.3: Associated type requirements 91 ...
Section 17.4: Class-Only Protocols 93 ...
Section 17.5: Protocol extension for a specific conforming class 94 ...
Section 17.6: Using the RawRepresentable protocol (Extensible Enum) 94 ...
Section 17.7: Implementing Hashable protocol 95 ..

Chapter 18: Functions 97 ...

Section 18.1: Basic Use 97 ...
Section 18.2: Functions with Parameters 97 ...
Section 18.3: Subscripts 98 ...
Section 18.4: Methods 99 ..
Section 18.5: Variadic Parameters 100 ...
Section 18.6: Operators are Functions 100 ..
Section 18.7: Passing and returning functions 101 ..
Section 18.8: Function types 101 ...
Section 18.9: Inout Parameters 101 ..
Section 18.10: Throwing Errors 101 ...
Section 18.11: Returning Values 102 ..
Section 18.12: Trailing Closure Syntax 102 ...
Section 18.13: Functions With Closures 103 ..

Chapter 19: Extensions 105 ...
Section 19.1: What are Extensions? 105 ..
Section 19.2: Variables and functions 105 ..
Section 19.3: Initializers in Extensions 106 ..
Section 19.4: Subscripts 106 ...
Section 19.5: Protocol extensions 106 ...
Section 19.6: Restrictions 107 ..
Section 19.7: What are extensions and when to use them 107 ..

Chapter 20: Classes 109 ...
Section 20.1: Defining a Class 109 ..
Section 20.2: Properties and Methods 109 ..
Section 20.3: Reference Semantics 109 ...
Section 20.4: Classes and Multiple Inheritance 110 ..
Section 20.5: deinit 111 ..

Chapter 21: Type Casting 112 ..
Section 21.1: Downcasting 112 ...
Section 21.2: Type casting in Swift Language 112 ..
Section 21.3: Upcasting 114 ...
Section 21.4: Example of using a downcast on a function parameter involving subclassing 114
Section 21.5: Casting with switch 115 ..

Chapter 22: Generics 116 ...
Section 22.1: The Basics of Generics 116 ...
Section 22.2: Constraining Generic Placeholder Types 117 ..
Section 22.3: Generic Class Examples 118 ...
Section 22.4: Using Generics to Simplify Array Functions 119 ..
Section 22.5: Advanced Type Constraints 119 ..
Section 22.6: Generic Class Inheritance 120 ..
Section 22.7: Use generics to enhance type-safety 121 ..

Chapter 23: OptionSet 122 ..
Section 23.1: OptionSet Protocol 122 ..

Chapter 24: Reading & Writing JSON 123 ..
Section 24.1: JSON Serialization, Encoding, and Decoding with Apple Foundation and the Swift Standard

Library 123 ..
Section 24.2: SwiftyJSON 126 ...
Section 24.3: Freddy 127 ...
Section 24.4: JSON Parsing Swift 3 129 ...
Section 24.5: Simple JSON parsing into custom objects 131 ..

Section 24.6: Arrow 132 ...

Chapter 25: Advanced Operators 135 ..
Section 25.1: Bitwise Operators 135 ..
Section 25.2: Custom Operators 136 ..
Section 25.3: Overflow Operators 137 ...
Section 25.4: Commutative Operators 137 ..
Section 25.5: Overloading + for Dictionaries 138 ..
Section 25.6: Precedence of standard Swift operators 138 ...

Chapter 26: Method Swizzling 140 ..
Section 26.1: Extending UIViewController and Swizzling viewDidLoad 140 ..
Section 26.2: Basics of Swift Swizzling 141 ..
Section 26.3: Basics of Swizzling - Objective-C 141 ..

Chapter 27: Reflection 143 ...
Section 27.1: Basic Usage for Mirror 143 ..
Section 27.2: Getting type and names of properties for a class without having to instantiate it 143

Chapter 28: Access Control 147 ...
Section 28.1: Basic Example using a Struct 147 ...
Section 28.2: Subclassing Example 148 ...
Section 28.3: Getters and Setters Example 148 ..

Chapter 29: Closures 149 ...
Section 29.1: Closure basics 149 ..
Section 29.2: Syntax variations 150 ..
Section 29.3: Passing closures into functions 150 ...
Section 29.4: Captures, strong/weak references, and retain cycles 152 ...
Section 29.5: Using closures for asynchronous coding 153 ..
Section 29.6: Closures and Type Alias 154 ..

Chapter 30: Initializers 155 ...
Section 30.1: Convenience init 155 ..
Section 30.2: Setting default property values 157 ..
Section 30.3: Customizing initialization with parameters 158 ..
Section 30.4: Throwable Initilizer 159 ...

Chapter 31: Associated Objects 160 ...
Section 31.1: Property, in a protocol extension, achieved using associated object 160 ..

Chapter 32: Concurrency 163 ..
Section 32.1: Obtaining a Grand Central Dispatch (GCD) queue 163 ...
Section 32.2: Concurrent Loops 163 ...
Section 32.3: Running tasks in a Grand Central Dispatch (GCD) queue 164 ...
Section 32.4: Running Tasks in an OperationQueue 166 ...
Section 32.5: Creating High-Level Operations 167 ...

Chapter 33: Getting Started with Protocol Oriented Programming 169 ..
Section 33.1: Using protocols as first class types 169 ...
Section 33.2: Leveraging Protocol Oriented Programming for Unit Testing 172 ..

Chapter 34: Functional Programming in Swift 174 ..
Section 34.1: Extracting a list of names from a list of Person(s) 174 ..
Section 34.2: Traversing 174 ...
Section 34.3: Filtering 174 ..
Section 34.4: Using Filter with Structs 175 ...
Section 34.5: Projecting 176 ..

Chapter 35: Function as first class citizens in Swift 178 ..

Section 35.1: Assigning function to a variable 178 ..
Section 35.2: Passing function as an argument to another function, thus creating a Higher-Order Function

179 ...
Section 35.3: Function as return type from another function 179 ..

Chapter 36: Blocks 180 ...
Section 36.1: Non-escaping closure 180 ...
Section 36.2: Escaping closure 180 ...

Chapter 37: The Defer Statement 182 ...
Section 37.1: When to use a defer statement 182 ...
Section 37.2: When NOT to use a defer statement 182 ...

Chapter 38: Style Conventions 183 ..
Section 38.1: Fluent Usage 183 ..
Section 38.2: Clear Usage 184 ..
Section 38.3: Capitalization 185 ..

Chapter 39: NSRegularExpression in Swift 187 ..
Section 39.1: Extending String to do simple pattern matching 187 ...
Section 39.2: Basic Usage 188 ..
Section 39.3: Replacing Substrings 188 ..
Section 39.4: Special Characters 189 ...
Section 39.5: Validation 189 ..
Section 39.6: NSRegularExpression for mail validation 189 ..

Chapter 40: RxSwift 191 ..
Section 40.1: Disposing 191 ...
Section 40.2: RxSwift basics 191 ...
Section 40.3: Creating observables 192 ...
Section 40.4: Bindings 193 ...
Section 40.5: RxCocoa and ControlEvents 193 ...

Chapter 41: Swift Package Manager 196 ..
Section 41.1: Creation and usage of a simple Swift package 196 ..

Chapter 42: Working with C and Objective-C 198 ..
Section 42.1: Use a module map to import C headers 198 ..
Section 42.2: Using Objective-C classes from Swift code 198 ...
Section 42.3: Specify a bridging header to swiftc 200 ..
Section 42.4: Use the C standard library 200 ..
Section 42.5: Fine-grained interoperation between Objective-C and Swift 200 ..
Section 42.6: Using Swift classes from Objective-C code 201 ...

Chapter 43: Documentation markup 203 ...
Section 43.1: Class documentation 203 ..
Section 43.2: Documentation styles 203 ..

Chapter 44: Typealias 207 ...
Section 44.1: typealias for closures with parameters 207 ..
Section 44.2: typealias for empty closures 207 ..
Section 44.3: typealias for other types 207 ...

Chapter 45: Dependency Injection 208 ..
Section 45.1: Dependency Injection with View Controllers 208 ..
Section 45.2: Dependency Injection Types 211 ...

Chapter 46: Caching on disk space 214 ...
Section 46.1: Reading 214 ..
Section 46.2: Saving 214 ..

Chapter 47: Algorithms with Swift 215 ..
Section 47.1: Sorting 215 ..
Section 47.2: Insertion Sort 218 ...
Section 47.3: Selection sort 218 ...
Section 47.4: Asymptotic analysis 219 ...
Section 47.5: Quick Sort - O(n log n) complexity time 219 ..
Section 47.6: Graph, Trie, Stack 220 ...

Chapter 48: Swift Advance functions 234 ..
Section 48.1: Flatten multidimensional array 234 ...
Section 48.2: Introduction with advance functions 234 ..

Chapter 49: Completion Handler 236 ...
Section 49.1: Completion handler with no input argument 236 ...
Section 49.2: Completion handler with input argument 236 ..

Chapter 50: Swift HTTP server by Kitura 238 ...
Section 50.1: Hello world application 238 ...

Chapter 51: Generate UIImage of Initials from String 241 ...
Section 51.1: InitialsImageFactory 241 ..

Chapter 52: Design Patterns - Creational 242 ..
Section 52.1: Singleton 242 ..
Section 52.2: Builder Pattern 242 ..
Section 52.3: Factory Method 248 ..
Section 52.4: Observer 249 ..
Section 52.5: Chain of responsibility 250 ..
Section 52.6: Iterator 252 ...

Chapter 53: Design Patterns - Structural 253 ..
Section 53.1: Adapter 253 ...
Section 53.2: Facade 253 ...

Chapter 54: (Unsafe) Buer Pointers 255 ..
Section 54.1: UnsafeMutablePointer 255 ..
Section 54.2: Practical Use-Case for Buer Pointers 256 ..

Chapter 55: Cryptographic Hashing 257 ...
Section 55.1: HMAC with MD5, SHA1, SHA224, SHA256, SHA384, SHA512 (Swift 3) 257 ...
Section 55.2: MD2, MD4, MD5, SHA1, SHA224, SHA256, SHA384, SHA512 (Swift 3) 258 ...

Chapter 56: AES encryption 260 ..
Section 56.1: AES encryption in CBC mode with a random IV (Swift 3.0) 260 ..
Section 56.2: AES encryption in CBC mode with a random IV (Swift 2.3) 262 ...
Section 56.3: AES encryption in ECB mode with PKCS7 padding 264 ...

Chapter 57: PBKDF2 Key Derivation 266 ...
Section 57.1: Password Based Key Derivation 2 (Swift 3) 266 ...
Section 57.2: Password Based Key Derivation 2 (Swift 2.3) 267 ...
Section 57.3: Password Based Key Derivation Calibration (Swift 2.3) 268 ...
Section 57.4: Password Based Key Derivation Calibration (Swift 3) 268 ..

Chapter 58: Logging in Swift 270 ..
Section 58.1: dump 270 ..
Section 58.2: Debug Print 271 ...
Section 58.3: print() vs dump() 272 ..
Section 58.4: print vs NSLog 272 ..

Chapter 59: Memory Management 274 ...

Section 59.1: Reference Cycles and Weak References 274 ...
Section 59.2: Manual Memory Management 275 ...

Chapter 60: Performance 276 ..
Section 60.1: Allocation Performance 276 ..

Credits 278 ..

You may also like 282 ..

GoalKicker.com – Swift™ Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/SwiftBook

This Swift™ Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Swift™ group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/SwiftBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 2

Chapter 1: Getting started with Swift
Language

Swift Version Xcode Version Release Date
development began (first commit) - 2010-07-17

1.0 Xcode 6 2014-06-02

1.1 Xcode 6.1 2014-10-16

1.2 Xcode 6.3 2015-02-09

2.0 Xcode 7 2015-06-08

2.1 Xcode 7.1 2015-09-23

open-source debut - 2015-12-03

2.2 Xcode 7.3 2016-03-21

2.3 Xcode 8 2016-09-13

3.0 Xcode 8 2016-09-13

3.1 Xcode 8.3 2017-03-27

4.0 Xcode 9 2017-11-19

4.1 Xcode 9.3 2018-03-29

Section 1.1: Your first Swift program
Write your code in a file named hello.swift:

print("Hello, world!")

To compile and run a script in one step, use swift from the terminal (in a directory where this file is located):

To launch a terminal, press CTRL + ALT + T on Linux, or find it in Launchpad on macOS. To change
directory, enter cddirectory_name (or cd .. to go back)

$ swift hello.swift
Hello, world!

A compiler is a computer program (or a set of programs) that transforms source code written in a
programming language (the source language) into another computer language (the target language), with
the latter often having a binary form known as object code. (Wikipedia)

To compile and run separately, use swiftc:

$ swiftc hello.swift

This will compile your code into hello file. To run it, enter ./, followed by a filename.

$./hello
Hello, world!

Or use the swift REPL (Read-Eval-Print-Loop), by typing swift from the command line, then entering your
code in the interpreter:

https://github.com/apple/swift/commit/afc81c1855bf711315b8e5de02db138d3d487eeb
https://developer.apple.com/videos/play/wwdc2014/101/
https://developer.apple.com/swift/blog/?id=17
https://developer.apple.com/swift/blog/?id=22
https://developer.apple.com/swift/blog/?id=29
http://www.russbishop.net/swift-2-1
https://developer.apple.com/swift/blog/?id=34
https://swift.org/blog/swift-2-2-released/
https://swift.org/blog/swift-2-3/
https://swift.org/blog/swift-3-0-released/
https://swift.org/blog/swift-3-1-released/
https://swift.org/blog/swift-4-0-released/
https://swift.org/blog/swift-4-1-released/
https://en.wikipedia.org/wiki/Compiler
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 3

Code:

func greet(name: String, surname: String) {
 print("Greetings \(name) \(surname)")
}

let myName = "Homer"
let mySurname = "Simpson"

greet(name: myName, surname: mySurname)

Let's break this large code into pieces:

func greet(name: String, surname: String) { // function body } - create a function that
takes a name and a surname.

print("Greetings \(name) \(surname)") - This prints out to the console "Greetings ", then name,
then surname. Basically \(variable_name) prints out that variable's value.

let myName = "Homer" and let mySurname = "Simpson" - create constants (variables which value
you can't change) using let with names: myName, mySurname and values: "Homer", "Simpson"
respectively.

greet(name: myName, surname: mySurname) - calls a function that we created earlier supplying the
values of constants myName, mySurname.

Running it using REPL:

$ swift
Welcome to Apple Swift. Type :help for assistance.
 1> func greet(name: String, surname: String) {
 2. print("Greetings \(name) \(surname)")
 3. }
 4>
 5> let myName = "Homer"
myName: String = "Homer"
 6> let mySurname = "Simpson"
mySurname: String = "Simpson"
 7> greet(name: myName, surname: mySurname)
Greetings Homer Simpson
 8> ^D

Press CTRL + D to quit from REPL.

Section 1.2: Your first program in Swift on a Mac (using a
Playground)
From your Mac, download and install Xcode from the Mac App Store following this link.

After the installation is complete, open Xcode and select Get started with a Playground:

https://itunes.apple.com/it/app/xcode/id497799835?mt=12
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 4

On the next panel, you can give your Playground a name or you can leave it MyPlayground and press Next:

Select a location where to save the Playground and press Create:

http://i.stack.imgur.com/Ox1wg.png
http://i.stack.imgur.com/sO7GW.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 5

The Playground will open and your screen should look something like this:

http://i.stack.imgur.com/DnLtL.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 6

Now that the Playground is on the screen, press ⇧ + cmd + Y to show the Debug Area.

Finally delete the text inside Playground and type:

print("Hello world")

You should see 'Hello world' in the Debug Area and "Hello world\n" in the right Sidebar:

http://i.stack.imgur.com/BlAVs.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 7

Congratulations! You've created your first program in Swift!

Section 1.3: Your first program in Swift Playgrounds app on
iPad
Swift Playgrounds app is a great way to get started coding Swift on the go. To use it:

1- Download Swift Playgrounds for iPad from App Store.

http://i.stack.imgur.com/VMeXE.png
https://itunes.apple.com/us/app/swift-playgrounds/id908519492?mt=8
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 8

2- Open the app.

3- In the My Playgrounds tab, tap + on the top left corner and then select Blank template.

4- Enter your code.

5- Tap Run My Code to run your code.

6- At the front of each line, the result will be stored in a small square. Tap it to reveal the result.

7- To step slowly through code to trace it, tap the button next to Run My Code.

Section 1.4: Installing Swift
First, download the compiler and components.

Next, add Swift to your path. On macOS, the default location for the downloadable toolchain is
/Library/Developer/Toolchains. Run the following command in Terminal:

export PATH=/Library/Developer/Toolchains/swift-latest.xctoolchain/usr/bin:"${PATH}"

On Linux, you will need to install clang:

$ sudo apt-get install clang

If you installed the Swift toolchain to a directory other than the system root, you will need to run the following
command, using the actual path of your Swift installation:

$ export PATH=/path/to/Swift/usr/bin:"${PATH}"

You can verify you have the current version of Swift by running this command:

$ swift --version

Section 1.5: Optional Value and Optional enum
Optionals type, which handles the absence of a value. Optionals say either "there is a value, and it equals x" or
"there isn't a value at all".

https://i.stack.imgur.com/Ig7wZ.png
https://swift.org/download/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 9

An Optional is a type on its own, actually one of Swift’s new super-powered enums. It has two possible values, None
and Some(T), where T is an associated value of the correct data type available in Swift.

Let's have a look at this piece of code for example:

let x: String? = "Hello World"

if let y = x {
 print(y)
}

In fact if you add a print(x.dynamicType) statement in the code above you'll see this in the console:

Optional<String>

String? is actually syntactic sugar for Optional, and Optional is a type in its own right.

Here's a simplified version of the header of Optional, which you can see by command-clicking on the word Optional
in your code from Xcode:

enum Optional<Wrapped> {

 /// The absence of a value.
 case none

 /// The presence of a value, stored as `Wrapped`.
 case some(Wrapped)
}

Optional is actually an enum, defined in relation to a generic type Wrapped. It has two cases: .none to represent the
absence of a value, and .some to represent the presence of a value, which is stored as its associated value of type
Wrapped.

Let me go through it again: String? is not a String but an Optional<String>.The fact that Optional is a type
means that it has its own methods, for example map and flatMap.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 10

Chapter 2: Variables & Properties
Section 2.1: Creating a Variable
Declare a new variable with var, followed by a name, type, and value:

var num: Int = 10

Variables can have their values changed:

num = 20 // num now equals 20

Unless they're defined with let:

let num: Int = 10 // num cannot change

Swift infers the type of variable, so you don't always have to declare variable type:

let ten = 10 // num is an Int
let pi = 3.14 // pi is a Double
let floatPi: Float = 3.14 // floatPi is a Float

Variable names aren't restricted to letters and numbers - they can also contain most other unicode characters,
although there are some restrictions

Constant and variable names cannot contain whitespace characters, mathematical symbols, arrows,
private-use (or invalid) Unicode code points, or line- and box-drawing characters. Nor can they begin with
a number

Source developer.apple.com

var π: Double = 3.14159
var ��: String = "Apples"

Section 2.2: Property Observers
Property observers respond to changes to a property's value.

var myProperty = 5 {
 willSet {
 print("Will set to \(newValue). It was previously \(myProperty)")
 }
 didSet {
 print("Did set to \(myProperty). It was previously \(oldValue)")
 }
}
myProperty = 6
// prints: Will set to 6, It was previously 5
// prints: Did set to 6. It was previously 5

willSet is called before myProperty is set. The new value is available as newValue, and the old value is still
available as myProperty.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 11

didSet is called after myProperty is set. The old value is available as oldValue, and the new value is now
available as myProperty .

Note: didSet and willSet will not be called in the following cases:

Assigning an initial value
Modifying the variable within its own didSet or willSet

The parameter names for oldValue and newValue of didSet and willSet can also be declared to increase
readability:

var myFontSize = 10 {
 willSet(newFontSize) {
 print("Will set font to \(newFontSize), it was \(myFontSize)")
 }
 didSet(oldFontSize) {
 print("Did set font to \(myFontSize), it was \(oldFontSize)")
 }
}

Caution: While it is supported to declare setter parameter names, one should be cautious not to mix
names up:

willSet(oldValue) and didSet(newValue) are entirely legal, but will considerably confuse readers
of your code.

Section 2.3: Lazy Stored Properties
Lazy stored properties have values that are not calculated until first accessed. This is useful for memory saving
when the variable's calculation is computationally expensive. You declare a lazy property with lazy:

lazy var veryExpensiveVariable = expensiveMethod()

Often it is assigned to a return value of a closure:

lazy var veryExpensiveString = { () -> String in
 var str = expensiveStrFetch()
 str.expensiveManipulation(integer: arc4random_uniform(5))
 return str
}()

Lazy stored properties must be declared with var.

Section 2.4: Property Basics
Properties can be added to a class or struct (technically enums too, see "Computed Properties" example). These
add values that associate with instances of classes/structs:

class Dog {
 var name = ""
}

In the above case, instances of Dog have a property named name of type String. The property can be accessed and

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 12

modified on instances of Dog:

let myDog = Dog()
myDog.name = "Doggy" // myDog's name is now "Doggy"

These types of properties are considered stored properties, as they store something on an object and affect its
memory.

Section 2.5: Computed Properties
Different from stored properties, computed properties are built with a getter and a setter, performing necessary
code when accessed and set. Computed properties must define a type:

var pi = 3.14

class Circle {
 var radius = 0.0
 var circumference: Double {
 get {
 return pi * radius * 2
 }
 set {
 radius = newValue / pi / 2
 }
 }
}

let circle = Circle()
circle.radius = 1
print(circle.circumference) // Prints "6.28"
circle.circumference = 14
print(circle.radius) // Prints "2.229..."

A read-only computed property is still declared with a var:

var circumference: Double {
 get {
 return pi * radius * 2
 }
}

Read-only computed properties can be shortened to exclude get:

var circumference: Double {
 return pi * radius * 2
}

Section 2.6: Local and Global Variables
Local variables are defined within a function, method, or closure:

func printSomething() {
 let localString = "I'm local!"
 print(localString)
}

func printSomethingAgain() {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 13

 print(localString) // error
}

Global variables are defined outside of a function, method, or closure, and are not defined within a type (think
outside of all brackets). They can be used anywhere:

let globalString = "I'm global!"
print(globalString)

func useGlobalString() {
 print(globalString) // works!
}

for i in 0..<2 {
 print(globalString) // works!
}

class GlobalStringUser {
 var computeGlobalString {
 return globalString // works!
 }
}

Global variables are defined lazily (see "Lazy Properties" example).

Section 2.7: Type Properties
Type properties are properties on the type itself, not on the instance. They can be both stored or computed
properties. You declare a type property with static:

struct Dog {
 static var noise = "Bark!"
}

print(Dog.noise) // Prints "Bark!"

In a class, you can use the class keyword instead of static to make it overridable. However, you can only apply
this on computed properties:

class Animal {
 class var noise: String {
 return "Animal noise!"
 }
}
class Pig: Animal {
 override class var noise: String {
 return "Oink oink!"
 }
}

This is used often with the singleton pattern.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 14

Chapter 3: Numbers
Section 3.1: Number types and literals
Swift's built-in numeric types are:

Word-sized (architecture-dependent) signed Int and unsigned UInt.
Fixed-size signed integers Int8, Int16, Int32, Int64, and unsigned integers UInt8, UInt16, UInt32, UInt64.
Floating-point types Float32/Float, Float64/Double, and Float80 (x86-only).

Literals

A numeric literal's type is inferred from context:

let x = 42 // x is Int by default
let y = 42.0 // y is Double by default

let z: UInt = 42 // z is UInt
let w: Float = -1 // w is Float
let q = 100 as Int8 // q is Int8

Underscores (_) may be used to separate digits in numeric literals. Leading zeros are ignored.

Floating point literals may be specified using significand and exponent parts (gnificand» e «exponent» for decimal;
b> «significand» p «exponent» for hexadecimal).

Integer literal syntax
let decimal = 10 // ten
let decimal = -1000 // negative one thousand
let decimal = -1_000 // equivalent to -1000
let decimal = 42_42_42 // equivalent to 424242
let decimal = 0755 // equivalent to 755, NOT 493 as in some other languages
let decimal = 0123456789

let hexadecimal = 0x10 // equivalent to 16
let hexadecimal = 0x7FFFFFFF
let hexadecimal = 0xBadFace
let hexadecimal = 0x0123_4567_89ab_cdef

let octal = 0o10 // equivalent to 8
let octal = 0o755 // equivalent to 493
let octal = -0o0123_4567

let binary = -0b101010 // equivalent to -42
let binary = 0b111_101_101 // equivalent to 0o755
let binary = 0b1011_1010_1101 // equivalent to 0xB_A_D

Floating-point literal syntax
let decimal = 0.0
let decimal = -42.0123456789
let decimal = 1_000.234_567_89

let decimal = 4.567e5 // equivalent to 4.567×10⁵, or 456_700.0
let decimal = -2E-4 // equivalent to -2×10⁻⁴, or -0.0002
let decimal = 1e+0 // equivalent to 1×10⁰, or 1.0

let hexadecimal = 0x1p0 // equivalent to 1×2⁰, or 1.0
let hexadecimal = 0x1p-2 // equivalent to 1×2⁻², or 0.25

https://developer.apple.com/reference/swift/int
https://developer.apple.com/reference/swift/uint
https://developer.apple.com/reference/swift/int8
https://developer.apple.com/reference/swift/int16
https://developer.apple.com/reference/swift/int32
https://developer.apple.com/reference/swift/int64
https://developer.apple.com/reference/swift/uint8
https://developer.apple.com/reference/swift/uint16
https://developer.apple.com/reference/swift/uint32
https://developer.apple.com/reference/swift/uint64
https://developer.apple.com/reference/swift/float
https://developer.apple.com/reference/swift/double
https://developer.apple.com/reference/swift/float80
https://en.wikipedia.org/wiki/Significand
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 15

let hexadecimal = 0xFEEDp+3 // equivalent to 65261×2³, or 522088.0
let hexadecimal = 0x1234.5P4 // equivalent to 0x12345, or 74565.0
let hexadecimal = 0x123.45P8 // equivalent to 0x12345, or 74565.0
let hexadecimal = 0x12.345P12 // equivalent to 0x12345, or 74565.0
let hexadecimal = 0x1.2345P16 // equivalent to 0x12345, or 74565.0
let hexadecimal = 0x0.12345P20 // equivalent to 0x12345, or 74565.0

Section 3.2: Convert numbers to/from strings
Use String initializers for converting numbers into strings:

String(1635999) // returns "1635999"
String(1635999, radix: 10) // returns "1635999"
String(1635999, radix: 2) // returns "110001111011010011111"
String(1635999, radix: 16) // returns "18f69f"
String(1635999, radix: 16, uppercase: true) // returns "18F69F"
String(1635999, radix: 17) // returns "129gf4"
String(1635999, radix: 36) // returns "z2cf"

Or use string interpolation for simple cases:

let x = 42, y = 9001
"Between \(x) and \(y)" // equivalent to "Between 42 and 9001"

Use initializers of numeric types to convert strings into numbers:

if let num = Int("42") { /* ... */ } // num is 42
if let num = Int("Z2cF") { /* ... */ } // returns nil (not a number)
if let num = Int("z2cf", radix: 36) { /* ... */ } // num is 1635999
if let num = Int("Z2cF", radix: 36) { /* ... */ } // num is 1635999
if let num = Int8("Z2cF", radix: 36) { /* ... */ } // returns nil (too large for Int8)

Section 3.3: Rounding
round

Rounds the value to the nearest whole number with x.5 rounding up (but note that -x.5 rounds down).

round(3.000) // 3
round(3.001) // 3
round(3.499) // 3
round(3.500) // 4
round(3.999) // 4

round(-3.000) // -3
round(-3.001) // -3
round(-3.499) // -3
round(-3.500) // -4 *** careful here ***
round(-3.999) // -4

ceil

Rounds any number with a decimal value up to the next larger whole number.

ceil(3.000) // 3
ceil(3.001) // 4
ceil(3.999) // 4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 16

ceil(-3.000) // -3
ceil(-3.001) // -3
ceil(-3.999) // -3

floor

Rounds any number with a decimal value down to the next smaller whole number.

floor(3.000) // 3
floor(3.001) // 3
floor(3.999) // 3

floor(-3.000) // -3
floor(-3.001) // -4
floor(-3.999) // -4

Int

Converts a Double to an Int, dropping any decimal value.

Int(3.000) // 3
Int(3.001) // 3
Int(3.999) // 3

Int(-3.000) // -3
Int(-3.001) // -3
Int(-3.999) // -3

Notes

round, ceil and floor handle both 64 and 32 bit architecture.

Section 3.4: Random number generation
arc4random_uniform(someNumber: UInt32) -> UInt32

This gives you random integers in the range 0 to someNumber - 1.

The maximum value for UInt32 is 4,294,967,295 (that is, 2^32 - 1).

Examples:

Coin flip

 let flip = arc4random_uniform(2) // 0 or 1

Dice roll

 let roll = arc4random_uniform(6) + 1 // 1...6

Random day in October

 let day = arc4random_uniform(31) + 1 // 1...31

Random year in the 1990s

 let year = 1990 + arc4random_uniform(10)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 17

General form:

let number = min + arc4random_uniform(max - min + 1)

where number, max, and min are UInt32.

Notes

There is a slight modulo bias with arc4random so arc4random_uniform is preferred.
You can cast a UInt32 value to an Int but just beware of going out of range.

Section 3.5: Convert one numeric type to another
func doSomething1(value: Double) { /* ... */ }
func doSomething2(value: UInt) { /* ... */ }

let x = 42 // x is an Int
doSomething1(Double(x)) // convert x to a Double
doSomething2(UInt(x)) // convert x to a UInt

Integer initializers produce a runtime error if the value overflows or underflows:

Int8(-129.0) // fatal error: floating point value cannot be converted to Int8 because it is less
than Int8.min
Int8(-129) // crash: EXC_BAD_INSTRUCTION / SIGILL
Int8(-128) // ok
Int8(-2) // ok
Int8(17) // ok
Int8(127) // ok
Int8(128) // crash: EXC_BAD_INSTRUCTION / SIGILL
Int8(128.0) // fatal error: floating point value cannot be converted to Int8 because it is greater
than Int8.max

Float-to-integer conversion rounds values towards zero:

Int(-2.2) // -2
Int(-1.9) // -1
Int(-0.1) // 0
Int(1.0) // 1
Int(1.2) // 1
Int(1.9) // 1
Int(2.0) // 2

Integer-to-float conversion may be lossy:

Int(Float(1_000_000_000_000_000_000)) // 999999984306749440

Section 3.6: Exponentiation
In Swift, we can exponentiate Doubles with the built-in pow() method:

pow(BASE, EXPONENT)

In the code below, the base (5) is set to the power of the exponent (2) :

let number = pow(5.0, 2.0) // Equals 25

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 18

Chapter 4: Strings and Characters
Section 4.1: String & Character Literals
String literals in Swift are delimited with double quotes ("):

let greeting = "Hello!" // greeting's type is String

Characters can be initialized from string literals, as long as the literal contains only one grapheme cluster:

let chr: Character = "H" // valid
let chr2: Character = "�" // valid
let chr3: Character = "abc" // invalid - multiple grapheme clusters

String Interpolation

String interpolation allows injecting an expression directly into a string literal. This can be done with all types of
values, including strings, integers, floating point numbers and more.

The syntax is a backslash followed by parentheses wrapping the value: \\(value). Any valid expression may appear
in the parentheses, including function calls.

let number = 5
let interpolatedNumber = "\\(number)" // string is "5"
let fortyTwo = "\\(6 * 7)" // string is "42"

let example = "This post has \\(number) view\\(number == 1 ? "" : "s")"
// It will output "This post has 5 views" for the above example.
// If the variable number had the value 1, it would output "This post has 1 view" instead.

For custom types, the default behavior of string interpolation is that "\\(myobj)" is equivalent to String(myobj),
the same representation used by print(myobj). You can customize this behavior by implementing the
CustomStringConvertible protocol for your type.

Version ≥ 3.0

For Swift 3, in accordance with SE-0089, String.init<T>(_:) has been renamed to String.init<T>(describing:).

The string interpolation "\\(myobj)" will prefer the new String.init<T: LosslessStringConvertible>(_:)
initializer, but will fall back to init<T>(describing:) if the value is not LosslessStringConvertible.

Special Characters

Certain characters require a special escape sequence to use them in string literals:

Character Meaning
\\0 the null character
\\\\ a plain backslash, \\
\\t a tab character
\\v a vertical tab
\\r a carriage return
\\n a line feed ("newline")
\\" a double quote, "
\\' a single quote, '

https://developer.apple.com/reference/swift/string
https://developer.apple.com/reference/swift/character
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html#//apple_ref/doc/uid/TP40014097-CH7-ID292
https://github.com/apple/swift/blob/master/stdlib/public/core/StringInterpolation.swift.gyb
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_CustomStringConvertible_Protocol/index.html
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_CustomStringConvertible_Protocol/index.html
https://github.com/apple/swift-evolution/blob/master/proposals/0089-rename-string-reflection-init.md
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 19

\\u{n} the Unicode code point n (in hexadecimal)

Example:

let message = "Then he said, \\"I \\u{1F496} you!\\""

print(message) // Then he said, "I � you!"

Section 4.2: Concatenate strings
Concatenate strings with the + operator to produce a new string:

let name = "John"
let surname = "Appleseed"
let fullName = name + " " + surname // fullName is "John Appleseed"

Append to a mutable string using the += compound assignment operator, or using a method:

let str2 = "there"
var instruction = "look over"
instruction += " " + str2 // instruction is now "look over there"

var instruction = "look over"
instruction.append(" " + str2) // instruction is now "look over there"

Append a single character to a mutable String:

var greeting: String = "Hello"
let exclamationMark: Character = "!"
greeting.append(exclamationMark)
// produces a modified String (greeting) = "Hello!"

Append multiple characters to a mutable String

var alphabet:String = "my ABCs: "
alphabet.append(contentsOf: (0x61...0x7A).map(UnicodeScalar.init)
 .map(Character.init))
// produces a modified string (alphabet) = "my ABCs: abcdefghijklmnopqrstuvwxyz"
Version ≥ 3.0

appendContentsOf(_:) has been renamed to append(_:).

Join a sequence of strings to form a new string using joinWithSeparator(_:):

let words = ["apple", "orange", "banana"]
let str = words.joinWithSeparator(" & ")

print(str) // "apple & orange & banana"
Version ≥ 3.0

joinWithSeparator(_:) has been renamed to joined(separator:).

The separator is the empty string by default, so ["a", "b", "c"].joined() == "abc".

http://stackoverflow.com/questions/24002092/what-is-the-difference-between-let-and-var-in-swift
https://developer.apple.com/reference/swift/1540630
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/BasicOperators.html#//apple_ref/doc/uid/TP40014097-CH6-ID69
http://swiftdoc.org/v3.0/type/String/#func-append_-string
http://swiftdoc.org/v3.0/type/String/#func-append_-string
http://swiftdoc.org/v3.0/type/String/#func-append_-string
http://swiftdoc.org/v3.0/type/String/#func-append_-string
http://swiftdoc.org/v3.0/type/String/#func-append_-string
http://swiftdoc.org/v2.2/protocol/SequenceType/
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_SequenceType_Protocol/index.html#//apple_ref/swift/intfm/SequenceType/s:FesRxs12SequenceTypeWx9Generator7Element_zSSrS_17joinWithSeparatorFSSSS
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_SequenceType_Protocol/index.html#//apple_ref/swift/intfm/SequenceType/s:FesRxs12SequenceTypeWx9Generator7Element_zSSrS_17joinWithSeparatorFSSSS
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_SequenceType_Protocol/index.html#//apple_ref/swift/intfm/SequenceType/s:FesRxs12SequenceTypeWx9Generator7Element_zSSrS_17joinWithSeparatorFSSSS
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_SequenceType_Protocol/index.html#//apple_ref/swift/intfm/SequenceType/s:FesRxs12SequenceTypeWx9Generator7Element_zSSrS_17joinWithSeparatorFSSSS
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_SequenceType_Protocol/index.html#//apple_ref/swift/intfm/SequenceType/s:FesRxs12SequenceTypeWx9Generator7Element_zSSrS_17joinWithSeparatorFSSSS
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element-string-joined_
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element-string-joined_
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element-string-joined_
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element-string-joined_
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element-string-joined_
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 20

Section 4.3: String Encoding and Decomposition
A Swift String is made of Unicode code points. It can be decomposed and encoded in several different ways.

let str = "ที่�①!"

Decomposing Strings

A string's characters are Unicode extended grapheme clusters:

Array(str.characters) // ["ท่ี", "�", "①", "!"]

The unicodeScalars are the Unicode code points that make up a string (notice that ที่ is one grapheme cluster, but
3 code points — 3607, 3637, 3656 — so the length of the resulting array is not the same as with characters):

str.unicodeScalars.map{ $0.value } // [3607, 3637, 3656, 128076, 9312, 33]

You can encode and decompose strings as UTF-8 (a sequence of UInt8s) or UTF-16 (a sequence of UInt16s):

Array(str.utf8) // [224, 184, 151, 224, 184, 181, 224, 185, 136, 240, 159, 145, 140, 226, 145,
160, 33]
Array(str.utf16) // [3607, 3637, 3656, 55357, 56396, 9312, 33]

String Length and Iteration

A string's characters, unicodeScalars, utf8, and utf16 are all Collections, so you can get their count and iterate
over them:

// NOTE: These operations are NOT necessarily fast/cheap!

str.characters.count // 4
str.unicodeScalars.count // 6
str.utf8.count // 17
str.utf16.count // 7

for c in str.characters { // ...
for u in str.unicodeScalars { // ...
for byte in str.utf8 { // ...
for byte in str.utf16 { // ...

Section 4.4: Examine and compare strings
Check whether a string is empty:

if str.isEmpty {
 // do something if the string is empty
}

// If the string is empty, replace it with a fallback:
let result = str.isEmpty ? "fallback string" : str

Check whether two strings are equal (in the sense of Unicode canonical equivalence):

"abc" == "def" // false
"abc" == "ABC" // false
"abc" == "abc" // true

// "LATIN SMALL LETTER A WITH ACUTE" == "LATIN SMALL LETTER A" + "COMBINING ACUTE ACCENT"

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html
http://www.unicode.org/standard/standard.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Strings/Articles/stringsClusters.html
https://en.wikipedia.org/wiki/Code_point
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_CollectionType_Protocol/index.html
http://www.unicode.org/glossary/#canonical_equivalent
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 21

"\u{e1}" == "a\u{301}" // true

Check whether a string starts/ends with another string:

"fortitude".hasPrefix("fort") // true
"Swift Language".hasSuffix("age") // true

Section 4.5: Reversing Strings
Version = 2.2

let aString = "This is a test string."

// first, reverse the String's characters
let reversedCharacters = aString.characters.reverse()

// then convert back to a String with the String() initializer
let reversedString = String(reversedCharacters)

print(reversedString) // ".gnirts tset a si sihT"
Version = 3.0

let reversedCharacters = aString.characters.reversed()
let reversedString = String(reversedCharacters)

Section 4.6: Check if String contains Characters from a
Defined Set
Letters

Version = 3.0

let letters = CharacterSet.letters

let phrase = "Test case"
let range = phrase.rangeOfCharacter(from: letters)

// range will be nil if no letters is found
if let test = range {
 print("letters found")
}
else {
 print("letters not found")
}
Version = 2.2

let letters = NSCharacterSet.letterCharacterSet()

let phrase = "Test case"
let range = phrase.rangeOfCharacterFromSet(letters)

// range will be nil if no letters is found
if let test = range {
 print("letters found")
}
else {
 print("letters not found")
}

The new CharacterSet struct that is also bridged to the Objective-C NSCharacterSet class define several predefined
sets as:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 22

decimalDigits

capitalizedLetters

alphanumerics

controlCharacters

illegalCharacters

and more you can find in the NSCharacterSet reference.

You also can define your own set of characters:

Version = 3.0

let phrase = "Test case"
let charset = CharacterSet(charactersIn: "t")

if let _ = phrase.rangeOfCharacter(from: charset, options: .caseInsensitive) {
 print("yes")
}
else {
 print("no")
}
Version = 2.2

let charset = NSCharacterSet(charactersInString: "t")

if let _ = phrase.rangeOfCharacterFromSet(charset, options: .CaseInsensitiveSearch, range: nil) {
 print("yes")
}
else {
 print("no")
}

You can also include range:

Version = 3.0

let phrase = "Test case"
let charset = CharacterSet(charactersIn: "t")

if let _ = phrase.rangeOfCharacter(from: charset, options: .caseInsensitive, range:
phrase.startIndex..<phrase.endIndex)) {
 print("yes")
}
else {
 print("no")
}

Section 4.7: String Iteration
Version < 3.0

let string = "My fantastic string"
var index = string.startIndex

while index != string.endIndex {
 print(string[index])
 index = index.successor()
}

Note: endIndex is after the end of the string (i.e. string[string.endIndex] is an error, but
string[string.startIndex] is fine). Also, in an empty string (""), string.startIndex == string.endIndex is true.
Be sure to check for empty strings, since you cannot call startIndex.successor() on an empty string.

https://developer.apple.com/reference/foundation/nscharacterset
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 23

Version = 3.0

In Swift 3, String indexes no longer have successor(), predecessor(), advancedBy(_:), advancedBy(_:limit:), or
distanceTo(_:).

Instead, those operations are moved to the collection, which is now responsible for incrementing and
decrementing its indices.

Available methods are .index(after:), .index(before:) and .index(_:, offsetBy:).

let string = "My fantastic string"
var currentIndex = string.startIndex

while currentIndex != string.endIndex {
 print(string[currentIndex])
 currentIndex = string.index(after: currentIndex)
}

Note: we're using currentIndex as a variable name to avoid confusion with the .index method.

And, for example, if you want to go the other way:

Version < 3.0

var index:String.Index? = string.endIndex.predecessor()

while index != nil {
 print(string[index!])
 if index != string.startIndex {
 index = index.predecessor()
 }
 else {
 index = nil
 }
}

(Or you could just reverse the string first, but if you don't need to go all the way through the string you probably
would prefer a method like this)

Version = 3.0

var currentIndex: String.Index? = string.index(before: string.endIndex)

while currentIndex != nil {
 print(string[currentIndex!])
 if currentIndex != string.startIndex {
 currentIndex = string.index(before: currentIndex!)
 }
 else {
 currentIndex = nil
 }
}

Note, Index is an object type, and not an Int. You cannot access a character of string as follows:

let string = "My string"
string[2] // can't do this
string.characters[2] // and also can't do this

But you can get a specific index as follows:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 24

Version < 3.0

index = string.startIndex.advanceBy(2)
Version = 3.0

currentIndex = string.index(string.startIndex, offsetBy: 2)

And can go backwards like this:

Version < 3.0

index = string.endIndex.advancedBy(-2)
Version = 3.0

currentIndex = string.index(string.endIndex, offsetBy: -2)

If you might exceed the string's bounds, or you want to specify a limit you can use:

Version < 3.0

index = string.startIndex.advanceBy(20, limit: string.endIndex)
Version = 3.0

currentIndex = string.index(string.startIndex, offsetBy: 20, limitedBy: string.endIndex)

Alternatively one can just iterate through the characters in a string, but this might be less useful depending on the
context:

for c in string.characters {
 print(c)
}

Section 4.8: Splitting a String into an Array
In Swift you can easily separate a String into an array by slicing it at a certain character:

Version = 3.0

let startDate = "23:51"

let startDateAsArray = startDate.components(separatedBy: ":") // ["23", "51"]`
Version = 2.2

let startDate = "23:51"

let startArray = startDate.componentsSeparatedByString(":") // ["23", "51"]`

Or when the separator isn't present:

Version = 3.0

let myText = "MyText"

let myTextArray = myText.components(separatedBy: " ") // myTextArray is ["MyText"]
Version = 2.2

let myText = "MyText"

let myTextArray = myText.componentsSeparatedByString(" ") // myTextArray is ["MyText"]

Section 4.9: Unicode
Setting values

Using Unicode directly

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 25

var str: String = "I want to visit 北京, Москва, म◌ु◌ंबई, القاهرة, and 서울시. �"
var character: Character = "�"

Using hexadecimal values

var str: String = "\\u{61}\\u{5927}\\u{1F34E}\\u{3C0}" // a大�π
var character: Character = "\\u{65}\\u{301}" // é = "e" + accent mark

Note that the Swift Character can be composed of multiple Unicode code points, but appears to be a single
character. This is called an Extended Grapheme Cluster.

Conversions

String --> Hex

// Accesses views of different Unicode encodings of `str`
str.utf8
str.utf16
str.unicodeScalars // UTF-32

Hex --> String

let value0: UInt8 = 0x61
let value1: UInt16 = 0x5927
let value2: UInt32 = 0x1F34E

let string0 = String(UnicodeScalar(value0)) // a
let string1 = String(UnicodeScalar(value1)) // 大
let string2 = String(UnicodeScalar(value2)) // �

// convert hex array to String
let myHexArray = [0x43, 0x61, 0x74, 0x203C, 0x1F431] // an Int array
var myString = ""
for hexValue in myHexArray {
 myString.append(UnicodeScalar(hexValue))
}
print(myString) // Cat‼�

Note that for UTF-8 and UTF-16 the conversion is not always this easy because things like emoji cannot be encoded
with a single UTF-16 value. It takes a surrogate pair.

Section 4.10: Converting Swift string to a number type
Int("123") // Returns 123 of Int type
Int("abcd") // Returns nil
Int("10") // Returns 10 of Int type
Int("10", radix: 2) // Returns 2 of Int type
Double("1.5") // Returns 1.5 of Double type
Double("abcd") // Returns nil

Note that doing this returns an Optional value, which should be unwrapped accordingly before being used.

Section 4.11: Convert String to and from Data / NSData
To convert String to and from Data / NSData we need to encode this string with a specific encoding. The most

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 26

famous one is UTF-8 which is an 8-bit representation of Unicode characters, suitable for transmission or storage by
ASCII-based systems. Here is a list of all available String Encodings

String to Data/NSData

Version = 3.0

let data = string.data(using: .utf8)
Version = 2.2

let data = string.dataUsingEncoding(NSUTF8StringEncoding)

Data/NSData to String

Version = 3.0

let string = String(data: data, encoding: .utf8)
Version = 2.2

let string = String(data: data, encoding: NSUTF8StringEncoding)

Section 4.12: Formatting Strings
Leading Zeros
let number: Int = 7
let str1 = String(format: "%03d", number) // 007
let str2 = String(format: "%05d", number) // 00007

Numbers after Decimal
let number: Float = 3.14159
let str1 = String(format: "%.2f", number) // 3.14
let str2 = String(format: "%.4f", number) // 3.1416 (rounded)

Decimal to Hexadecimal
let number: Int = 13627
let str1 = String(format: "%2X", number) // 353B
let str2 = String(format: "%2x", number) // 353b (notice the lowercase b)

Alternatively one could use specialized initializer that does the same:

let number: Int = 13627
let str1 = String(number, radix: 16, uppercase: true) //353B
let str2 = String(number, radix: 16) // 353b

Decimal to a number with arbitrary radix
let number: Int = 13627
let str1 = String(number, radix: 36) // aij

Radix is Int in [2, 36].

Section 4.13: Uppercase and Lowercase Strings
To make all the characters in a String uppercase or lowercase:

Version = 2.2

let text = "AaBbCc"
let uppercase = text.uppercaseString // "AABBCC"

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/#//apple_ref/c/tdef/NSStringEncoding
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/#//apple_ref/c/tdef/NSStringEncoding
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 27

let lowercase = text.lowercaseString // "aabbcc"
Version = 3.0

let text = "AaBbCc"
let uppercase = text.uppercased() // "AABBCC"
let lowercase = text.lowercased() // "aabbcc"

Section 4.14: Remove characters from a string not defined in
Set
Version = 2.2

func removeCharactersNotInSetFromText(text: String, set: Set<Character>) -> String {
 return String(text.characters.filter { set.contains($0) })
}

let text = "Swift 3.0 Come Out"
var chars = Set([Character]("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLKMNOPQRSTUVWXYZ".characters))
let newText = removeCharactersNotInSetFromText(text, set: chars) // "SwiftComeOut"
Version = 3.0

func removeCharactersNotInSetFromText(text: String, set: Set<Character>) -> String {
 return String(text.characters.filter { set.contains($0) })
}

let text = "Swift 3.0 Come Out"
var chars = Set([Character]("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLKMNOPQRSTUVWXYZ".characters))
let newText = removeCharactersNotInSetFromText(text: text, set: chars)

Section 4.15: Count occurrences of a Character into a String
Given a String and a Character

let text = "Hello World"
let char: Character = "o"

We can count the number of times the Character appears into the String using

let sensitiveCount = text.characters.filter { $0 == char }.count // case-sensitive
let insensitiveCount = text.lowercaseString.characters.filter { $0 ==
Character(String(char).lowercaseString) } // case-insensitive

Section 4.16: Remove leading and trailing WhiteSpace and
NewLine
Version < 3.0

let someString = " Swift Language \n"
let trimmedString =
someString.stringByTrimmingCharactersInSet(NSCharacterSet.whitespaceAndNewlineCharacterSet())
// "Swift Language"

Method stringByTrimmingCharactersInSet returns a new string made by removing from both ends of the String
characters contained in a given character set.

We can also just remove only whitespace or newline.

Removing only whitespace:

let trimmedWhiteSpace =

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 28

someString.stringByTrimmingCharactersInSet(NSCharacterSet.whitespaceCharacterSet())
// "Swift Language \n"

Removing only newline:

let trimmedNewLine =
someString.stringByTrimmingCharactersInSet(NSCharacterSet.newlineCharacterSet())
// " Swift Language "
Version = 3.0

let someString = " Swift Language \n"

let trimmedString = someString.trimmingCharacters(in: .whitespacesAndNewlines)
// "Swift Language"

let trimmedWhiteSpace = someString.trimmingCharacters(in: .whitespaces)
// "Swift Language \n"

let trimmedNewLine = someString.trimmingCharacters(in: .newlines)
// " Swift Language "

Note: all these methods belong to Foundation. Use import Foundation if Foundation isn't already imported via other
libraries like Cocoa or UIKit.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 29

Chapter 5: Booleans
Section 5.1: What is Bool?
Bool is a Boolean type with two possible values: true and false.

let aTrueBool = true
let aFalseBool = false

Bools are used in control-flow statements as conditions. The if statement uses a Boolean condition to determine
which block of code to run:

func test(_ someBoolean: Bool) {
 if someBoolean {
 print("IT'S TRUE!")
 }
 else {
 print("IT'S FALSE!")
 }
}
test(aTrueBool) // prints "IT'S TRUE!"

Section 5.2: Booleans and Inline Conditionals
A clean way to handle booleans is using an inline conditional with the a ? b : c ternary operator, which is part of
Swift's Basic Operations.

The inline conditional is made up of 3 components:

question ? answerIfTrue : answerIfFalse

where question is a boolean that is evaluated and answerIfTrue is the value returned if the question is true, and
answerIfFalse is the value returned if the question is false.

The expression above is the same as:

if question {
 answerIfTrue
} else {
 answerIfFalse
}

With inline conditionals you return a value based on a boolean:

func isTurtle(_ value: Bool) {
 let color = value ? "green" : "red"
 print("The animal is \(color)")
}

isTurtle(true) // outputs 'The animal is green'
isTurtle(false) // outputs 'The animal is red'

You can also call methods based on a boolean value:

func actionDark() {

https://developer.apple.com/reference/swift/bool
https://en.wikipedia.org/wiki/Boolean_data_type
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/BasicOperators.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 30

 print("Welcome to the dark side")
}

func actionJedi() {
 print("Welcome to the Jedi order")
}

func welcome(_ isJedi: Bool) {
 isJedi ? actionJedi() : actionDark()
}

welcome(true) // outputs 'Welcome to the Jedi order'
welcome(false) // outputs 'Welcome to the dark side'

Inline conditionals allow for clean one-liner boolean evaluations

Section 5.3: Boolean Logical Operators
The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:

if (10 < 20) || (20 < 10) {
 print("Expression is true")
}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will return
false because only one of the two operand expressions evaluates to true:

if (10 < 20) && (20 < 10) {
 print("Expression is true")
}

The XOR (^) operator returns true if one and only one of the two operands evaluates to true. For example, the
following code will return true since only one operator evaluates to be true:

if (10 < 20) ^ (20 < 10) {
 print("Expression is true")
}

Section 5.4: Negate a Bool with the prefix ! operator
The prefix ! operator returns the logical negation of its argument. That is, !true returns false, and !false returns
true.

print(!true) // prints "false"
print(!false) // prints "true"

func test(_ someBoolean: Bool) {
 if !someBoolean {
 print("someBoolean is false")
 }
}

https://developer.apple.com/reference/swift/1540994
https://developer.apple.com/reference/swift/1540994
https://developer.apple.com/reference/swift/1540994
https://en.wikipedia.org/wiki/Negation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 31

Chapter 6: Arrays
Array is an ordered, random-access collection type. Arrays are one of the most commonly used data types in an
app. We use the Array type to hold elements of a single type, the array's Element type. An array can store any kind
of elements---from integers to strings to classes.

Section 6.1: Basics of Arrays
Array is an ordered collection type in the Swift standard library. It provides O(1) random access and dynamic
reallocation. Array is a generic type, so the type of values it contains are known at compile time.

As Array is a value type, its mutability is defined by whether it is annotated as a var (mutable) or let (immutable).

The type [Int] (meaning: an array containing Ints) is syntactic sugar for Array<T>.

Read more about arrays in The Swift Programming Language.

Empty arrays

The following three declarations are equivalent:

// A mutable array of Strings, initially empty.

var arrayOfStrings: [String] = [] // type annotation + array literal
var arrayOfStrings = [String]() // invoking the [String] initializer
var arrayOfStrings = Array<String>() // without syntactic sugar

Array literals

An array literal is written with square brackets surrounding comma-separated elements:

// Create an immutable array of type [Int] containing 2, 4, and 7
let arrayOfInts = [2, 4, 7]

The compiler can usually infer the type of an array based on the elements in the literal, but explicit type
annotations can override the default:

let arrayOfUInt8s: [UInt8] = [2, 4, 7] // type annotation on the variable
let arrayOfUInt8s = [2, 4, 7] as [UInt8] // type annotation on the initializer expression
let arrayOfUInt8s = [2 as UInt8, 4, 7] // explicit for one element, inferred for the others

Arrays with repeated values
// An immutable array of type [String], containing ["Example", "Example", "Example"]
let arrayOfStrings = Array(repeating: "Example",count: 3)

Creating arrays from other sequences
let dictionary = ["foo" : 4, "bar" : 6]

// An immutable array of type [(String, Int)], containing [("bar", 6), ("foo", 4)]
let arrayOfKeyValuePairs = Array(dictionary)

Multi-dimensional arrays

In Swift, a multidimensional array is created by nesting arrays: a 2-dimensional array of Int is [[Int]] (or
Array<Array<Int>>).

let array2x3 = [
 [1, 2, 3],

https://developer.apple.com/reference/swift/array
https://en.wikipedia.org/wiki/Syntactic_sugar
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html#//apple_ref/doc/uid/TP40014097-CH8-ID107
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 32

 [4, 5, 6]
]
// array2x3[0][1] is 2, and array2x3[1][2] is 6.

To create a multidimensional array of repeated values, use nested calls of the array initializer:

var array3x4x5 = Array(repeating: Array(repeating: Array(repeating: 0,count: 5),count: 4),count: 3)

Section 6.2: Extracting values of a given type from an Array
with flatMap(_:)
The things Array contains values of Any type.

let things: [Any] = [1, "Hello", 2, true, false, "World", 3]

We can extract values of a given type and create a new Array of that specific type. Let's say we want to extract all
the Int(s) and put them into an Int Array in a safe way.

let numbers = things.flatMap { $0 as? Int }

Now numbers is defined as [Int]. The flatMap function discard all nil elements and the result thus contains only
the following values:

[1, 2, 3]

Section 6.3: Combining an Array's elements with
reduce(_:combine:)
reduce(_:combine:) can be used in order to combine the elements of a sequence into a single value. It takes an
initial value for the result, as well as a closure to apply to each element – which will return the new accumulated
value.

For example, we can use it to sum an array of numbers:

let numbers = [2, 5, 7, 8, 10, 4]

let sum = numbers.reduce(0) {accumulator, element in
 return accumulator + element
}

print(sum) // 36

We're passing 0 into the initial value, as that's the logical initial value for a summation. If we passed in a value of N,
the resulting sum would be N + 36. The closure passed to reduce has two arguments. accumulator is the current
accumulated value, which is assigned the value that the closure returns at each iteration. element is the current
element in the iteration.

As in this example, we're passing an (Int, Int) -> Int closure to reduce, which is simply outputting the addition
of the two inputs – we can actually pass in the + operator directly, as operators are functions in Swift:

let sum = numbers.reduce(0, combine: +)

http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reduce_combine_
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 33

Section 6.4: Flattening the result of an Array transformation
with flatMap(_:)
As well as being able to create an array by filtering out nil from the transformed elements of a sequence, there is
also a version of flatMap(_:) that expects the transformation closure to return a sequence S.

extension SequenceType {
 public func flatMap<S : SequenceType>(transform: (Self.Generator.Element) throws -> S) rethrows
-> [S.Generator.Element]
}

Each sequence from the transformation will be concatenated, resulting in an array containing the combined
elements of each sequence – [S.Generator.Element].

Combining the characters in an array of strings

For example, we can use it to take an array of prime strings and combine their characters into a single array:

let primes = ["2", "3", "5", "7", "11", "13", "17", "19"]
let allCharacters = primes.flatMap { $0.characters }
// => "["2", "3", "5", "7", "1", "1", "1", "3", "1", "7", "1", "9"]"

Breaking the above example down:

primes is a [String] (As an array is a sequence, we can call flatMap(_:) on it).1.
The transformation closure takes in one of the elements of primes, a String2.
(Array<String>.Generator.Element).
The closure then returns a sequence of type String.CharacterView.3.
The result is then an array containing the combined elements of all the sequences from each of the4.
transformation closure calls – [String.CharacterView.Generator.Element].

Flattening a multidimensional array

As flatMap(_:) will concatenate the sequences returned from the transformation closure calls, it can be used to
flatten a multidimensional array – such as a 2D array into a 1D array, a 3D array into a 2D array etc.

This can simply be done by returning the given element $0 (a nested array) in the closure:

// A 2D array of type [[Int]]
let array2D = [[1, 3], [4], [6, 8, 10], [11]]

// A 1D array of type [Int]
let flattenedArray = array2D.flatMap { $0 }

print(flattenedArray) // [1, 3, 4, 6, 8, 10, 11]

Section 6.5: Lazily flattening a multidimensional Array with
flatten()
We can use flatten() in order to lazily reduce the nesting of a multi-dimensional sequence.

For example, lazy flattening a 2D array into a 1D array:

// A 2D array of type [[Int]]
let array2D = [[1, 3], [4], [6, 8, 10], [11]]

http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-s_-sequencetype_-self-generator-element-throws-s
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-s_-sequencetype_-self-generator-element-throws-s
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-s_-sequencetype_-self-generator-element-throws-s
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-s_-sequencetype_-self-generator-element-throws-s
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-s_-sequencetype_-self-generator-element-throws-s
http://swiftdoc.org/v2.2/type/String/
http://swiftdoc.org/v2.2/type/String.CharacterView/
http://swiftdoc.org/v2.2/type/String.CharacterView/
http://swiftdoc.org/v2.2/type/String.CharacterView/
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-sequencetype-flatten
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-sequencetype-flatten
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-sequencetype-flatten
https://en.wikipedia.org/wiki/Lazy_evaluation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 34

// A FlattenBidirectionalCollection<[[Int]]>
let lazilyFlattenedArray = array2D.flatten()

print(lazilyFlattenedArray.contains(4)) // true

In the above example, flatten() will return a FlattenBidirectionalCollection, which will lazily apply the
flattening of the array. Therefore contains(_:) will only require the first two nested arrays of array2D to be
flattened – as it will short-circuit upon finding the desired element.

Section 6.6: Filtering out nil from an Array transformation
with flatMap(_:)
You can use flatMap(_:) in a similar manner to map(_:) in order to create an array by applying a transform to a
sequence's elements.

extension SequenceType {
 public func flatMap<T>(@noescape transform: (Self.Generator.Element) throws -> T?) rethrows ->
[T]
}

The difference with this version of flatMap(_:) is that it expects the transform closure to return an Optional value
T? for each of the elements. It will then safely unwrap each of these optional values, filtering out nil – resulting in
an array of [T].

For example, you can this in order to transform a [String] into a [Int] using Int's failable String initializer,
filtering out any elements that cannot be converted:

let strings = ["1", "foo", "3", "4", "bar", "6"]

let numbersThatCanBeConverted = strings.flatMap { Int($0) }

print(numbersThatCanBeConverted) // [1, 3, 4, 6]

You can also use flatMap(_:)'s ability to filter out nil in order to simply convert an array of optionals into an array
of non-optionals:

let optionalNumbers : [Int?] = [nil, 1, nil, 2, nil, 3]

let numbers = optionalNumbers.flatMap { $0 }

print(numbers) // [1, 2, 3]

Section 6.7: Subscripting an Array with a Range
One can extract a series of consecutive elements from an Array using a Range.

let words = ["Hey", "Hello", "Bonjour", "Welcome", "Hi", "Hola"]
let range = 2...4
let slice = words[range] // ["Bonjour", "Welcome", "Hi"]

Subscripting an Array with a Range returns an ArraySlice. It's a subsequence of the Array.

In our example, we have an Array of Strings, so we get back ArraySlice<String>.

Although an ArraySlice conforms to CollectionType and can be used with sort, filter, etc, its purpose is not for

http://swiftdoc.org/v2.2/type/FlattenBidirectionalCollection/
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-equatable-contains_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-equatable-contains_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-equatable-contains_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-equatable-contains_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-equatable-contains_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-t_-self-generator-element-throws-t
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-t_-self-generator-element-throws-t
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-t_-self-generator-element-throws-t
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-t_-self-generator-element-throws-t
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--flatmap-t_-self-generator-element-throws-t
http://swiftdoc.org/v2.2/type/Int/#init_radix_
http://swiftdoc.org/v2.2/type/Int/#init_radix_
http://swiftdoc.org/v2.2/type/Int/#init_radix_
http://swiftdoc.org/v2.2/type/Int/#init_radix_
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 35

long-term storage but for transient computations: it should be converted back into an Array as soon as you've
finished working with it.

For this, use the Array() initializer:

let result = Array(slice)

To sum up in a simple example without intermediary steps:

let words = ["Hey", "Hello", "Bonjour", "Welcome", "Hi", "Hola"]
let selectedWords = Array(words[2...4]) // ["Bonjour", "Welcome", "Hi"]

Section 6.8: Removing element from an array without
knowing it's index
Generally, if we want to remove an element from an array, we need to know it's index so that we can remove it
easily using remove(at:) function.

But what if we don't know the index but we know the value of element to be removed!

So here is the simple extension to an array which will allow us to remove an element from array easily without
knowing it's index:

Swift3
extension Array where Element: Equatable {

 mutating func remove(_ element: Element) {
 _ = index(of: element).flatMap {
 self.remove(at: $0)
 }
 }
}

e.g.

 var array = ["abc", "lmn", "pqr", "stu", "xyz"]
 array.remove("lmn")
 print("\(array)") //["abc", "pqr", "stu", "xyz"]

 array.remove("nonexistent")
 print("\(array)") //["abc", "pqr", "stu", "xyz"]
 //if provided element value is not present, then it will do nothing!

Also if, by mistake, we did something like this: array.remove(25) i.e. we provided value with different data type,
compiler will throw an error mentioning-
cannot convert value to expected argument type

Section 6.9: Sorting an Array of Strings
Version = 3.0

The most simple way is to use sorted():

let words = ["Hello", "Bonjour", "Salute", "Ahola"]
let sortedWords = words.sorted()
print(sortedWords) // ["Ahola", "Bonjour", "Hello", "Salute"]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 36

or sort()

var mutableWords = ["Hello", "Bonjour", "Salute", "Ahola"]
mutableWords.sort()
print(mutableWords) // ["Ahola", "Bonjour", "Hello", "Salute"]

You can pass a closure as an argument for sorting:

let words = ["Hello", "Bonjour", "Salute", "Ahola"]
let sortedWords = words.sorted(isOrderedBefore: { $0 > $1 })
print(sortedWords) // ["Salute", "Hello", "Bonjour", "Ahola"]

Alternative syntax with a trailing closure:

let words = ["Hello", "Bonjour", "Salute", "Ahola"]
let sortedWords = words.sorted() { $0 > $1 }
print(sortedWords) // ["Salute", "Hello", "Bonjour", "Ahola"]

But there will be unexpected results if the elements in the array are not consistent:

let words = ["Hello", "bonjour", "Salute", "ahola"]
let unexpected = words.sorted()
print(unexpected) // ["Hello", "Salute", "ahola", "bonjour"]

To address this issue, either sort on a lowercase version of the elements:

let words = ["Hello", "bonjour", "Salute", "ahola"]
let sortedWords = words.sorted { $0.lowercased() < $1.lowercased() }
print(sortedWords) // ["ahola", "bonjour", "Hello", "Salute"]

Or import Foundation and use NSString's comparison methods like caseInsensitiveCompare:

let words = ["Hello", "bonjour", "Salute", "ahola"]
let sortedWords = words.sorted { $0.caseInsensitiveCompare($1) == .orderedAscending }
print(sortedWords) // ["ahola", "bonjour", "Hello", "Salute"]

Alternatively, use localizedCaseInsensitiveCompare, which can manage diacritics.

To properly sort Strings by the numeric value they contain, use compare with the .numeric option:

let files = ["File-42.txt", "File-01.txt", "File-5.txt", "File-007.txt", "File-10.txt"]
let sortedFiles = files.sorted() { $0.compare($1, options: .numeric) == .orderedAscending }
print(sortedFiles) // ["File-01.txt", "File-5.txt", "File-007.txt", "File-10.txt", "File-42.txt"]

Section 6.10: Accessing indices safely
By adding the following extension to array indices can be accessed without knowing if the index is inside bounds.

extension Array {
 subscript (safe index: Int) -> Element? {
 return indices ~= index ? self[index] : nil
 }
}

example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 37

if let thirdValue = array[safe: 2] {
 print(thirdValue)
}

Section 6.11: Filtering an Array
You can use the filter(_:) method on SequenceType in order to create a new array containing the elements of the
sequence that satisfy a given predicate, which can be provided as a closure.

For example, filtering even numbers from an [Int]:

let numbers = [22, 41, 23, 30]

let evenNumbers = numbers.filter { $0 % 2 == 0 }

print(evenNumbers) // [22, 30]

Filtering a [Person], where their age is less than 30:

struct Person {
 var age : Int
}

let people = [Person(age: 22), Person(age: 41), Person(age: 23), Person(age: 30)]

let peopleYoungerThan30 = people.filter { $0.age < 30 }

print(peopleYoungerThan30) // [Person(age: 22), Person(age: 23)]

Section 6.12: Transforming the elements of an Array with
map(_:)
As Array conforms to SequenceType, we can use map(_:) to transform an array of A into an array of B using a
closure of type (A) throws -> B.

For example, we could use it to transform an array of Ints into an array of Strings like so:

let numbers = [1, 2, 3, 4, 5]
let words = numbers.map { String($0) }
print(words) // ["1", "2", "3", "4", "5"]

map(_:) will iterate through the array, applying the given closure to each element. The result of that closure will be
used to populate a new array with the transformed elements.

Since String has an initialiser that receives an Int we can also use this clearer syntax:

let words = numbers.map(String.init)

A map(_:) transform need not change the type of the array – for example, it could also be used to multiply an array
of Ints by two:

let numbers = [1, 2, 3, 4, 5]
let numbersTimes2 = numbers.map {$0 * 2}
print(numbersTimes2) // [2, 4, 6, 8, 10]

http://swiftdoc.org/v2.2/protocol/SequenceType/#func-filter_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-filter_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-filter_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-filter_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-filter_
http://swiftdoc.org/v2.2/protocol/SequenceType
http://swiftdoc.org/v2.2/type/Array/
http://swiftdoc.org/v2.2/protocol/SequenceType/
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-map_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-map_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-map_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-map_
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-map_
http://swiftdoc.org/v2.2/type/Int/
http://swiftdoc.org/v2.2/type/String/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 38

Section 6.13: Useful Methods
Determine whether an array is empty or return its size

var exampleArray = [1,2,3,4,5]
exampleArray.isEmpty //false
exampleArray.count //5

Reverse an Array Note: The result is not performed on the array the method is called on and must be put
into its own variable.

exampleArray = exampleArray.reverse()
//exampleArray = [9, 8, 7, 6, 5, 3, 2]

Section 6.14: Sorting an Array
var array = [3, 2, 1]

Creating a new sorted array

As Array conforms to SequenceType, we can generate a new array of the sorted elements using a built in sort
method.

Version = 2.1 Version = 2.2

In Swift 2, this is done with the sort() method.

let sorted = array.sort() // [1, 2, 3]
Version ≥ 3.0

As of Swift 3, it has been re-named to sorted().

let sorted = array.sorted() // [1, 2, 3]

Sorting an existing array in place

As Array conforms to MutableCollectionType, we can sort its elements in place.

Version = 2.1 Version = 2.2

In Swift 2, this is done using the sortInPlace() method.

array.sortInPlace() // [1, 2, 3]
Version ≥ 3.0

As of Swift 3, it has been renamed to sort().

array.sort() // [1, 2, 3]

Note: In order to use the above methods, the elements must conform to the Comparable protocol.

Sorting an array with a custom ordering

You may also sort an array using a closure to define whether one element should be ordered before another –

http://swiftdoc.org/v2.2/type/Array/
http://swiftdoc.org/v2.2/protocol/SequenceType
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-sort
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-sort
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-sort
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-sorted
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-sorted
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-sorted
http://swiftdoc.org/v2.2/protocol/MutableCollectionType/
http://swiftdoc.org/v2.2/protocol/MutableCollectionType/#func-index_-randomaccessindextype-sortinplace_
http://swiftdoc.org/v2.2/protocol/MutableCollectionType/#func-index_-randomaccessindextype-sortinplace_
http://swiftdoc.org/v2.2/protocol/MutableCollectionType/#func-index_-randomaccessindextype-sortinplace_
http://swiftdoc.org/v3.0/protocol/MutableCollection/#func-self_-randomaccesscollection-sort_
http://swiftdoc.org/v3.0/protocol/MutableCollection/#func-self_-randomaccesscollection-sort_
http://swiftdoc.org/v3.0/protocol/MutableCollection/#func-self_-randomaccesscollection-sort_
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Comparable_Protocol/index.html#//apple_ref/swift/intf/s:Ps10Comparable
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 39

which isn't restricted to arrays where the elements must be Comparable. For example, it doesn't make sense for a
Landmark to be Comparable – but you can still sort an array of landmarks by height or name.

struct Landmark {
 let name : String
 let metersTall : Int
}

var landmarks = [Landmark(name: "Empire State Building", metersTall: 443),
 Landmark(name: "Eifell Tower", metersTall: 300),
 Landmark(name: "The Shard", metersTall: 310)]

Version = 2.1 Version = 2.2

// sort landmarks by height (ascending)
landmarks.sortInPlace {$0.metersTall < $1.metersTall}

print(landmarks) // [Landmark(name: "Eifell Tower", metersTall: 300), Landmark(name: "The Shard",
metersTall: 310), Landmark(name: "Empire State Building", metersTall: 443)]

// create new array of landmarks sorted by name
let alphabeticalLandmarks = landmarks.sort {$0.name < $1.name}

print(alphabeticalLandmarks) // [Landmark(name: "Eifell Tower", metersTall: 300), Landmark(name:
"Empire State Building", metersTall: 443), Landmark(name: "The Shard", metersTall: 310)]
Version ≥ 3.0

// sort landmarks by height (ascending)
landmarks.sort {$0.metersTall < $1.metersTall}

// create new array of landmarks sorted by name
let alphabeticalLandmarks = landmarks.sorted {$0.name < $1.name}

Note: String comparison can yield unexpected results if the strings are inconsistent, see Sorting an Array
of Strings.

Section 6.15: Finding the minimum or maximum element of an
Array
Version = 2.1 Version = 2.2

You can use the minElement() and maxElement() methods to find the minimum or maximum element in a given
sequence. For example, with an array of numbers:

let numbers = [2, 6, 1, 25, 13, 7, 9]

let minimumNumber = numbers.minElement() // Optional(1)
let maximumNumber = numbers.maxElement() // Optional(25)
Version ≥ 3.0

As of Swift 3, the methods have been renamed to min() and max() respectively:

let minimumNumber = numbers.min() // Optional(1)
let maximumNumber = numbers.max() // Optional(25)

The returned values from these methods are Optional to reflect the fact that the array could be empty – if it is, nil
will be returned.

http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-minelement
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-minelement
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-minelement
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-maxelement
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-maxelement
http://swiftdoc.org/v2.2/protocol/SequenceType/#func-generator-element_-comparable-maxelement
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-min
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-min
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-min
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-max
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-max
http://swiftdoc.org/v3.0/protocol/Sequence/#func-iterator-element_-comparable-max
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 40

Note: The above methods require the elements to conform to the Comparable protocol.

Finding the minimum or maximum element with a custom ordering

You may also use the above methods with a custom closure, defining whether one element should be ordered
before another, allowing you to find the minimum or maximum element in an array where the elements aren't
necessarily Comparable.

For example, with an array of vectors:

struct Vector2 {
 let dx : Double
 let dy : Double

 var magnitude : Double {return sqrt(dx*dx+dy*dy)}
}

let vectors = [Vector2(dx: 3, dy: 2), Vector2(dx: 1, dy: 1), Vector2(dx: 2, dy: 2)]

Version = 2.1 Version = 2.2

// Vector2(dx: 1.0, dy: 1.0)
let lowestMagnitudeVec2 = vectors.minElement { $0.magnitude < $1.magnitude }

// Vector2(dx: 3.0, dy: 2.0)
let highestMagnitudeVec2 = vectors.maxElement { $0.magnitude < $1.magnitude }
Version ≥ 3.0

let lowestMagnitudeVec2 = vectors.min { $0.magnitude < $1.magnitude }
let highestMagnitudeVec2 = vectors.max { $0.magnitude < $1.magnitude }

Section 6.16: Modifying values in an array
There are multiple ways to append values onto an array

var exampleArray = [1,2,3,4,5]
exampleArray.append(6)
//exampleArray = [1, 2, 3, 4, 5, 6]
var sixOnwards = [7,8,9,10]
exampleArray += sixOnwards
//exampleArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

and remove values from an array

exampleArray.removeAtIndex(3)
//exampleArray = [1, 2, 3, 5, 6, 7, 8, 9, 10]
exampleArray.removeLast()
//exampleArray = [1, 2, 3, 5, 6, 7, 8, 9]
exampleArray.removeFirst()
//exampleArray = [2, 3, 5, 6, 7, 8, 9]

Section 6.17: Comparing 2 Arrays with zip
The zip function accepts 2 parameters of type SequenceType and returns a Zip2Sequence where each element
contains a value from the first sequence and one from the second sequence.

Example

http://swiftdoc.org/v2.2/protocol/Comparable/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 41

let nums = [1, 2, 3]
let animals = ["Dog", "Cat", "Tiger"]
let numsAndAnimals = zip(nums, animals)

nomsAndAnimals now contains the following values

sequence1 sequence1
1 "Dog"

2 "Cat"

3 "Tiger"

This is useful when you want to perform some kind of comparation between the n-th element of each Array.

Example

Given 2 Arrays of Int(s)

let list0 = [0, 2, 4]
let list1 = [0, 4, 8]

you want to check whether each value into list1 is the double of the related value in list0.

let list1HasDoubleOfList0 = !zip(list0, list1).filter { $0 != (2 * $1)}.isEmpty

Section 6.18: Grouping Array values
If we have a struct like this

struct Box {
 let name: String
 let thingsInside: Int
}

and an array of Box(es)

let boxes = [
 Box(name: "Box 0", thingsInside: 1),
 Box(name: "Box 1", thingsInside: 2),
 Box(name: "Box 2", thingsInside: 3),
 Box(name: "Box 3", thingsInside: 1),
 Box(name: "Box 4", thingsInside: 2),
 Box(name: "Box 5", thingsInside: 3),
 Box(name: "Box 6", thingsInside: 1)
]

we can group the boxes by the thingsInside property in order to get a Dictionary where the key is the number of
things and the value is an array of boxes.

let grouped = boxes.reduce([Int:[Box]]()) { (res, box) -> [Int:[Box]] in
 var res = res
 res[box.thingsInside] = (res[box.thingsInside] ?? []) + [box]
 return res
}

Now grouped is a [Int:[Box]] and has the following content

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 42

[
 2: [Box(name: "Box 1", thingsInside: 2), Box(name: "Box 4", thingsInside: 2)],
 3: [Box(name: "Box 2", thingsInside: 3), Box(name: "Box 5", thingsInside: 3)],
 1: [Box(name: "Box 0", thingsInside: 1), Box(name: "Box 3", thingsInside: 1), Box(name: "Box
6", thingsInside: 1)]
]

Section 6.19: Value Semantics
Copying an array will copy all of the items inside the original array.

Changing the new array will not change the original array.

var originalArray = ["Swift", "is", "great!"]
var newArray = originalArray
newArray[2] = "awesome!"
//originalArray = ["Swift", "is", "great!"]
//newArray = ["Swift", "is", "awesome!"]

Copied arrays will share the same space in memory as the original until they are changed. As a result of this there is
a performance hit when the copied array is given its own space in memory as it is changed for the first time.

Section 6.20: Accessing Array Values
The following examples will use this array to demonstrate accessing values

var exampleArray:[Int] = [1,2,3,4,5]
//exampleArray = [1, 2, 3, 4, 5]

To access a value at a known index use the following syntax:

let exampleOne = exampleArray[2]
//exampleOne = 3

Note: The value at index two is the third value in the Array. Arrays use a zero based index which means the first
element in the Array is at index 0.

let value0 = exampleArray[0]
let value1 = exampleArray[1]
let value2 = exampleArray[2]
let value3 = exampleArray[3]
let value4 = exampleArray[4]
//value0 = 1
//value1 = 2
//value2 = 3
//value3 = 4
//value4 = 5

Access a subset of an Array using filter:

var filteredArray = exampleArray.filter({ $0 < 4 })
//filteredArray = [1, 2, 3]

Filters can have complex conditions like filtering only even numbers:

var evenArray = exampleArray.filter({ $0 % 2 == 0 })

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 43

//evenArray = [2, 4]

It is also possible to return the index of a given value, returning nil if the value wasn't found.

exampleArray.indexOf(3) // Optional(2)

There are methods for the first, last, maximum or minimum value in an Array. These methods will return nil if the
Array is empty.

exampleArray.first // Optional(1)
exampleArray.last // Optional(5)
exampleArray.maxElement() // Optional(5)
exampleArray.minElement() // Optional(1)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 44

Chapter 7: Tuples
A tuple type is a comma-separated list of types, enclosed in parentheses.

This list of types also can have name of the elements and use those names to refer to the values of the individual
elements.

An element name consists of an identifier followed immediately by a colon (:).

Common use -

We can use a tuple type as the return type of a function to enable the function to return a single tuple containing
multiple values

Section 7.1: What are Tuples?
Tuples group multiple values into a single compound value. The values within a tuple can be of any type and do not
have to be of the same type as each other.

Tuples are created by grouping any amount of values:

let tuple = ("one", 2, "three")

// Values are read using index numbers starting at zero
print(tuple.0) // one
print(tuple.1) // 2
print(tuple.2) // three

Also individual values can be named when the tuple is defined:

let namedTuple = (first: 1, middle: "dos", last: 3)

// Values can be read with the named property
print(namedTuple.first) // 1
print(namedTuple.middle) // dos

// And still with the index number
print(namedTuple.2) // 3

They can also be named when being used as a variable and even have the ability to have optional values inside:

var numbers: (optionalFirst: Int?, middle: String, last: Int)?

//Later On
numbers = (nil, "dos", 3)

print(numbers.optionalFirst)// nil
print(numbers.middle)//"dos"
print(numbers.last)//3

Section 7.2: Decomposing into individual variables
Tuples can be decomposed into individual variables with the following syntax:

let myTuple = (name: "Some Name", age: 26)
let (first, second) = myTuple

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 45

print(first) // "Some Name"
print(second) // 26

This syntax can be used regardless of if the tuple has unnamed properties:

let unnamedTuple = ("uno", "dos")
let (one, two) = unnamedTuple
print(one) // "uno"
print(two) // "dos"

Specific properties can be ignored by using underscore (_):

let longTuple = ("ichi", "ni", "san")
let (_, _, third) = longTuple
print(third) // "san"

Section 7.3: Tuples as the Return Value of Functions
Functions can return tuples:

func tupleReturner() -> (Int, String) {
 return (3, "Hello")
}

let myTuple = tupleReturner()
print(myTuple.0) // 3
print(myTuple.1) // "Hello"

If you assign parameter names, they can be used from the return value:

func tupleReturner() -> (anInteger: Int, aString: String) {
 return (3, "Hello")
}

let myTuple = tupleReturner()
print(myTuple.anInteger) // 3
print(myTuple.aString) // "Hello"

Section 7.4: Using a typealias to name your tuple type
Occasionally you may want to use the same tuple type in multiple places throughout your code. This can quickly get
messy, especially if your tuple is complex:

// Define a circle tuple by its center point and radius
let unitCircle: (center: (x: CGFloat, y: CGFloat), radius: CGFloat) = ((0.0, 0.0), 1.0)

func doubleRadius(ofCircle circle: (center: (x: CGFloat, y: CGFloat), radius: CGFloat)) -> (center:
(x: CGFloat, y: CGFloat), radius: CGFloat) {
 return (circle.center, circle.radius * 2.0)
}

If you use a certain tuple type in more than one place, you can use the typealias keyword to name your tuple type.

// Define a circle tuple by its center point and radius
typealias Circle = (center: (x: CGFloat, y: CGFloat), radius: CGFloat)

let unitCircle: Circle = ((0.0, 0.0), 1)

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Declarations.html#//apple_ref/doc/uid/TP40014097-CH34-ID361
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 46

func doubleRadius(ofCircle circle: Circle) -> Circle {
 // Aliased tuples also have access to value labels in the original tuple type.
 return (circle.center, circle.radius * 2.0)
}

If you find yourself doing this too often, however, you should consider using a struct instead.

Section 7.5: Swapping values
Tuples are useful to swap values between 2 (or more) variables without using temporary variables.

Example with 2 variables

Given 2 variables

var a = "Marty McFly"
var b = "Emmett Brown"

we can easily swap the values

(a, b) = (b, a)

Result:

print(a) // "Emmett Brown"
print(b) // "Marty McFly"

Example with 4 variables
var a = 0
var b = 1
var c = 2
var d = 3

(a, b, c, d) = (d, c, b, a)

print(a, b, c, d) // 3, 2, 1, 0

Section 7.6: Tuples as Case in Switch
Use tuples in a switch

let switchTuple = (firstCase: true, secondCase: false)

switch switchTuple {
 case (true, false):
 // do something
 case (true, true):
 // do something
 case (false, true):
 // do something
 case (false, false):
 // do something
}

Or in combination with an Enum For example with Size Classes:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 47

 let switchTuple = (UIUserInterfaceSizeClass.Compact, UIUserInterfaceSizeClass.Regular)

 switch switchTuple {
 case (.Regular, .Compact):
 //statement
 case (.Regular, .Regular):
 //statement
 case (.Compact, .Regular):
 //statement
 case (.Compact, .Compact):
 //statement
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 48

Chapter 8: Enums
Section 8.1: Basic enumerations
An enum provides a set of related values:

enum Direction {
 case up
 case down
 case left
 case right
}

enum Direction { case up, down, left, right }

Enum values can be used by their fully-qualified name, but you can omit the type name when it can be inferred:

let dir = Direction.up
let dir: Direction = Direction.up
let dir: Direction = .up

// func move(dir: Direction)...
move(Direction.up)
move(.up)

obj.dir = Direction.up
obj.dir = .up

The most fundamental way of comparing/extracting enum values is with a switch statement:

switch dir {
case .up:
 // handle the up case
case .down:
 // handle the down case
case .left:
 // handle the left case
case .right:
 // handle the right case
}

Simple enums are automatically Hashable, Equatable and have string conversions:

if dir == .down { ... }

let dirs: Set<Direction> = [.right, .left]

print(Direction.up) // prints "up"
debugPrint(Direction.up) // prints "Direction.up"

Section 8.2: Enums with associated values
Enum cases can contain one or more payloads (associated values):

enum Action {
 case jump
 case kick

https://developer.apple.com/library/prerelease/content/documentation/Swift/Conceptual/Swift_Programming_Language/Enumerations.html
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Hashable_Protocol/index.html#//apple_ref/swift/intf/s:Ps8Hashable
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Equatable_Protocol/index.html#//apple_ref/swift/intf/s:Ps9Equatable
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 49

 case move(distance: Float) // The "move" case has an associated distance
}

The payload must be provided when instantiating the enum value:

performAction(.jump)
performAction(.kick)
performAction(.move(distance: 3.3))
performAction(.move(distance: 0.5))

The switch statement can extract the associated value:

switch action {
case .jump:
 ...
case .kick:
 ...
case .move(let distance): // or case let .move(distance):
 print("Moving: \(distance)")
}

A single case extraction can be done using if case:

if case .move(let distance) = action {
 print("Moving: \(distance)")
}

The guard case syntax can be used for later use extraction:

guard case .move(let distance) = action else {
 print("Action is not move")
 return
}

Enums with associated values are not Equatable by default. Implementation of the == operator must be done
manually:

extension Action: Equatable { }

func ==(lhs: Action, rhs: Action) -> Bool {
 switch lhs {
 case .jump: if case .jump = rhs { return true }
 case .kick: if case .kick = rhs { return true }
 case .move(let lhsDistance): if case .move (let rhsDistance) = rhs { return lhsDistance ==
rhsDistance }
 }
 return false
}

Section 8.3: Indirect payloads
Normally, enums can't be recursive (because they would require infinite storage):

enum Tree<T> {
 case leaf(T)
 case branch(Tree<T>, Tree<T>) // error: recursive enum 'Tree<T>' is not marked 'indirect'
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 50

The indirect keyword makes the enum store its payload with a layer of indirection, rather than storing it inline.
You can use this keyword on a single case:

enum Tree<T> {
 case leaf(T)
 indirect case branch(Tree<T>, Tree<T>)
}

let tree = Tree.branch(.leaf(1), .branch(.leaf(2), .leaf(3)))

indirect also works on the whole enum, making any case indirect when necessary:

indirect enum Tree<T> {
 case leaf(T)
 case branch(Tree<T>, Tree<T>)
}

Section 8.4: Raw and Hash values
Enums without payloads can have raw values of any literal type:

enum Rotation: Int {
 case up = 0
 case left = 90
 case upsideDown = 180
 case right = 270
}

Enums without any specific type do not expose the rawValue property

enum Rotation {
 case up
 case right
 case down
 case left
}

let foo = Rotation.up
foo.rawValue //error

Integer raw values are assumed to start at 0 and increase monotonically:

enum MetasyntacticVariable: Int {
 case foo // rawValue is automatically 0
 case bar // rawValue is automatically 1
 case baz = 7
 case quux // rawValue is automatically 8
}

String raw values can be synthesized automatically:

enum MarsMoon: String {
 case phobos // rawValue is automatically "phobos"
 case deimos // rawValue is automatically "deimos"
}

A raw-valued enum automatically conforms to RawRepresentable. You can get an enum value's corresponding raw

https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_RawRepresentable_Protocol/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 51

value with .rawValue:

func rotate(rotation: Rotation) {
 let degrees = rotation.rawValue
 ...
}

You can also create an enum from a raw value using init?(rawValue:):

let rotation = Rotation(rawValue: 0) // returns Rotation.Up
let otherRotation = Rotation(rawValue: 45) // returns nil (there is no Rotation with rawValue 45)

if let moon = MarsMoon(rawValue: str) {
 print("Mars has a moon named \(str)")
} else {
 print("Mars doesn't have a moon named \(str)")
}

If you wish to get the hash value of a specific enum you can access its hashValue, The hash value will return the
index of the enum starting from zero.

let quux = MetasyntacticVariable(rawValue: 8)// rawValue is 8
quux?.hashValue //hashValue is 3

Section 8.5: Initializers
Enums can have custom init methods that can be more useful than the default init?(rawValue:). Enums can also
store values as well. This can be useful for storing the values they where initialized with and retrieving that value
later.

enum CompassDirection {
 case north(Int)
 case south(Int)
 case east(Int)
 case west(Int)

 init?(degrees: Int) {
 switch degrees {
 case 0...45:
 self = .north(degrees)
 case 46...135:
 self = .east(degrees)
 case 136...225:
 self = .south(degrees)
 case 226...315:
 self = .west(degrees)
 case 316...360:
 self = .north(degrees)
 default:
 return nil
 }
 }

 var value: Int = {
 switch self {
 case north(let degrees):
 return degrees
 case south(let degrees):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 52

 return degrees
 case east(let degrees):
 return degrees
 case west(let degrees):
 return degrees
 }
 }
}

Using that initializer we can do this:

var direction = CompassDirection(degrees: 0) // Returns CompassDirection.north
direction = CompassDirection(degrees: 90) // Returns CompassDirection.east
print(direction.value) //prints 90
direction = CompassDirection(degrees: 500) // Returns nil

Section 8.6: Enumerations share many features with classes
and structures
Enums in Swift are much more powerful than some of their counterparts in other languages, such as C. They share
many features with classes and structs, such as defining initialisers, computed properties, instance methods,
protocol conformances and extensions.

protocol ChangesDirection {
 mutating func changeDirection()
}

enum Direction {

 // enumeration cases
 case up, down, left, right

 // initialise the enum instance with a case
 // that's in the opposite direction to another
 init(oppositeTo otherDirection: Direction) {
 self = otherDirection.opposite
 }

 // computed property that returns the opposite direction
 var opposite: Direction {
 switch self {
 case .up:
 return .down
 case .down:
 return .up
 case .left:
 return .right
 case .right:
 return .left
 }
 }
}

// extension to Direction that adds conformance to the ChangesDirection protocol
extension Direction: ChangesDirection {
 mutating func changeDirection() {
 self = .left
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 53

var dir = Direction(oppositeTo: .down) // Direction.up

dir.changeDirection() // Direction.left

let opposite = dir.opposite // Direction.right

Section 8.7: Nested Enumerations
You can nest enumerations one inside an other, this allows you to structure hierarchical enums to be more
organized and clear.

enum Orchestra {
 enum Strings {
 case violin
 case viola
 case cello
 case doubleBasse
 }

 enum Keyboards {
 case piano
 case celesta
 case harp
 }

 enum Woodwinds {
 case flute
 case oboe
 case clarinet
 case bassoon
 case contrabassoon
 }
}

And you can use it like that:

let instrment1 = Orchestra.Strings.viola
let instrment2 = Orchestra.Keyboards.piano

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 54

Chapter 9: Structs
Section 9.1: Structs are value types
Unlike classes, which are passed by reference, structures are passed through copying:

first = "Hello"
second = first
first += " World!"
// first == "Hello World!"
// second == "Hello"

String is a structure, therefore it's copied on assignment.

Structures also cannot be compared using identity operator:

window0 === window1 // works because a window is a class instance
"hello" === "hello" // error: binary operator '===' cannot be applied to two 'String' operands

Every two structure instances are deemed identical if they compare equal.

Collectively, these traits that differentiate structures from classes are what makes structures value types.

Section 9.2: Accessing members of struct
In Swift, structures use a simple “dot syntax” to access their members.

For example:

struct DeliveryRange {
 var range: Double
 let center: Location
}
let storeLocation = Location(latitude: 44.9871,
 longitude: -93.2758)
var pizzaRange = DeliveryRange(range: 200,
 center: storeLocation)

You can access(print) the range like this:

 print(pizzaRange.range) // 200

You can even access members of members using dot syntax:

 print(pizzaRange.center.latitude) // 44.9871

Similar to how you can read values with dot syntax, you can also assign them.

pizzaRange.range = 250

Section 9.3: Basics of Structs
struct Repository {
 let identifier: Int

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 55

 let name: String
 var description: String?
}

This defines a Repository struct with three stored properties, an integer identifier, a string name, and an optional
string description. The identifier and name are constants, as they've been declared using the let-keyword. Once
set during initialization, they cannot be modified. The description is a variable. Modifying it updates the value of the
structure.

Structure types automatically receive a memberwise initializer if they do not define any of their own custom
initializers. The structure receives a memberwise initializer even if it has stored properties that do not have default
values.

Repository contains three stored properties of which only description has a default value (nil). Further it defines
no initializers of its own, so it receives a memberwise initializer for free:

let newRepository = Repository(identifier: 0, name: "New Repository", description: "Brand New
Repository")

Section 9.4: Mutating a Struct
A method of a struct that change the value of the struct itself must be prefixed with the mutating keyword

struct Counter {
 private var value = 0

 mutating func next() {
 value += 1
 }
}

When you can use mutating methods

The mutating methods are only available on struct values inside variables.

var counter = Counter()
counter.next()

When you can NOT use mutating methods

On the other hand, mutating methods are NOT available on struct values inside constants

let counter = Counter()
counter.next()
// error: cannot use mutating member on immutable value: 'counter' is a 'let' constant

Section 9.5: Structs cannot inherit
Unlike classes, structures cannot inherit:

class MyView: NSView { } // works

struct MyInt: Int { } // error: inheritance from non-protocol type 'Int'

Structures, however, can adopt protocols:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 56

struct Vector: Hashable { ... } // works

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 57

Chapter 10: Sets
Section 10.1: Declaring Sets
Sets are unordered collections of unique values. Unique values must be of the same type.

var colors = Set<String>()

You can declare a set with values by using the array literal syntax.

var favoriteColors: Set<String> = ["Red", "Blue", "Green", "Blue"]
// {"Blue", "Green", "Red"}

Section 10.2: Performing operations on sets
Common values from both sets:

You can use the intersect(_:) method to create a new set containing all the values common to both sets.

let favoriteColors: Set = ["Red", "Blue", "Green"]
let newColors: Set = ["Purple", "Orange", "Green"]

let intersect = favoriteColors.intersect(newColors) // a AND b
// intersect = {"Green"}

All values from each set:

You can use the union(_:) method to create a new set containing all the unique values from each set.

let union = favoriteColors.union(newColors) // a OR b
// union = {"Red", "Purple", "Green", "Orange", "Blue"}

Notice how the value "Green" only appears once in the new set.

Values that don't exist in both sets:

You can use the exclusiveOr(_:) method to create a new set containing the unique values from either but not
both sets.

let exclusiveOr = favoriteColors.exclusiveOr(newColors) // a XOR b
// exclusiveOr = {"Red", "Purple", "Orange", "Blue"}

Notice how the value "Green" doesn't appear in the new set, since it was in both sets.

Values that are not in a set:

You can use the subtract(_:) method to create a new set containing values that aren't in a specific set.

let subtract = favoriteColors.subtract(newColors) // a - (a AND b)
// subtract = {"Blue", "Red"}

Notice how the value "Green" doesn't appear in the new set, since it was also in the second set.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 58

Section 10.3: CountedSet
Version = 3.0

Swift 3 introduces the CountedSet class (it's the Swift version of the NSCountedSet Objective-C class).

CountedSet, as suggested by the name, keeps track of how many times a value is present.

let countedSet = CountedSet()
countedSet.add(1)
countedSet.add(1)
countedSet.add(1)
countedSet.add(2)

countedSet.count(for: 1) // 3
countedSet.count(for: 2) // 1

Section 10.4: Modifying values in a set
var favoriteColors: Set = ["Red", "Blue", "Green"]
//favoriteColors = {"Blue", "Green", "Red"}

You can use the insert(_:) method to add a new item into a set.

favoriteColors.insert("Orange")
//favoriteColors = {"Red", "Green", "Orange", "Blue"}

You can use the remove(_:) method to remove an item from a set. It returns optional containing value that was
removed or nil if value was not in the set.

let removedColor = favoriteColors.remove("Red")
//favoriteColors = {"Green", "Orange", "Blue"}
// removedColor = Optional("Red")

let anotherRemovedColor = favoriteColors.remove("Black")
// anotherRemovedColor = nil

Section 10.5: Checking whether a set contains a value
var favoriteColors: Set = ["Red", "Blue", "Green"]
//favoriteColors = {"Blue", "Green", "Red"}

You can use the contains(_:) method to check whether a set contains a value. It will return true if the set contains
that value.

if favoriteColors.contains("Blue") {
 print("Who doesn't like blue!")
}
// Prints "Who doesn't like blue!"

Section 10.6: Adding values of my own type to a Set
In order to define a Set of your own type you need to conform your type to Hashable

struct Starship: Hashable {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 59

 let name: String
 var hashValue: Int { return name.hashValue }
}

func ==(left:Starship, right: Starship) -> Bool {
 return left.name == right.name
}

Now you can create a Set of Starship(s)

let ships : Set<Starship> = [Starship(name:"Enterprise D"), Starship(name:"Voyager"),
Starship(name:"Defiant")]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 60

Chapter 11: Dictionaries
Section 11.1: Declaring Dictionaries
Dictionaries are an unordered collection of keys and values. Values relate to unique keys and must be of the same
type.

When initializing a Dictionary the full syntax is as follows:

var books : Dictionary<Int, String> = Dictionary<Int, String>()

Although a more concise way of initializing:

var books = [Int: String]()
// or
var books: [Int: String] = [:]

Declare a dictionary with keys and values by specifying them in a comma separated list. The types can be inferred
from the types of keys and values.

var books: [Int: String] = [1: "Book 1", 2: "Book 2"]
//books = [2: "Book 2", 1: "Book 1"]
var otherBooks = [3: "Book 3", 4: "Book 4"]
//otherBooks = [3: "Book 3", 4: "Book 4"]

Section 11.2: Accessing Values
A value in a Dictionary can be accessed using its key:

var books: [Int: String] = [1: "Book 1", 2: "Book 2"]
let bookName = books[1]
//bookName = "Book 1"

The values of a dictionary can be iterated through using the values property:

for book in books.values {
 print("Book Title: \(book)")
}
//output: Book Title: Book 2
//output: Book Title: Book 1

Similarly, the keys of a dictionary can be iterated through using its keys property:

for bookNumbers in books.keys {
 print("Book number: \(bookNumber)")
}
// outputs:
// Book number: 1
// Book number: 2

To get all key and value pair corresponding to each other (you will not get in proper order since it is a Dictionary)

for (book,bookNumbers)in books{
print("\(book) \(bookNumbers)")
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 61

// outputs:
// 2 Book 2
// 1 Book 1

Note that a Dictionary, unlike an Array, in inherently unordered-that is, there is no guarantee on the order during
iteration.

If you want to access multiple levels of a Dictionary use a repeated subscript syntax.

// Create a multilevel dictionary.
var myDictionary: [String:[Int:String]]! =
["Toys":[1:"Car",2:"Truck"],"Interests":[1:"Science",2:"Math"]]

print(myDictionary["Toys"][2]) // Outputs "Truck"
print(myDictionary["Interests"][1]) // Outputs "Science"

Section 11.3: Change Value of Dictionary using Key
var dict = ["name": "John", "surname": "Doe"]
// Set the element with key: 'name' to 'Jane'
dict["name"] = "Jane"
print(dict)

Section 11.4: Get all keys in Dictionary
let myAllKeys = ["name" : "Kirit" , "surname" : "Modi"]
let allKeys = Array(myAllKeys.keys)
print(allKeys)

Section 11.5: Modifying Dictionaries
Add a key and value to a Dictionary

var books = [Int: String]()
//books = [:]
books[5] = "Book 5"
//books = [5: "Book 5"]
books.updateValue("Book 6", forKey: 5)
//[5: "Book 6"]

updateValue returns the original value if one exists or nil.

let previousValue = books.updateValue("Book 7", forKey: 5)
//books = [5: "Book 7"]
//previousValue = "Book 6"

Remove value and their keys with similar syntax

books[5] = nil
//books [:]
books[6] = "Deleting from Dictionaries"
//books = [6: "Deleting from Dictionaries"]
let removedBook = books.removeValueForKey(6)
//books = [:]
//removedValue = "Deleting from Dictionaries"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 62

Section 11.6: Merge two dictionaries
extension Dictionary {
 func merge(dict: Dictionary<Key,Value>) -> Dictionary<Key,Value> {
 var mutableCopy = self
 for (key, value) in dict {
 // If both dictionaries have a value for same key, the value of the other dictionary is
used.
 mutableCopy[key] = value
 }
 return mutableCopy
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 63

Chapter 12: Switch
Parameter Details

Value to test The variable that to compare against

Section 12.1: Switch and Optionals
Some example cases when the result is an optional.

var result: AnyObject? = someMethod()

switch result {
case nil:
 print("result is nothing")
case is String:
 print("result is a String")
case _ as Double:
 print("result is not nil, any value that is a Double")
case let myInt as Int where myInt > 0:
 print("\(myInt) value is not nil but an int and greater than 0")
case let a?:
 print("\(a) - value is unwrapped")
}

Section 12.2: Basic Use
let number = 3
switch number {
case 1:
 print("One!")
case 2:
 print("Two!")
case 3:
 print("Three!")
default:
 print("Not One, Two or Three")
}

switch statements also work with data types other than integers. They work with any data type.Here's an example
of switching on a string:

let string = "Dog"
switch string {
case "Cat", "Dog":
 print("Animal is a house pet.")
default:
 print("Animal is not a house pet.")
}

This will print the following:

Animal is a house pet.

Section 12.3: Matching a Range
A single case in a switch statement can match a range of values.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 64

let number = 20
switch number {
case 0:
 print("Zero")
case 1..<10:
 print("Between One and Ten")
case 10..<20:
 print("Between Ten and Twenty")
case 20..<30:
 print("Between Twenty and Thirty")
default:
 print("Greater than Thirty or less than Zero")
}

Section 12.4: Partial matching
Switch statement make use of partial matching.

let coordinates: (x: Int, y: Int, z: Int) = (3, 2, 5)

switch (coordinates) {
case (0, 0, 0): // 1
 print("Origin")
case (_, 0, 0): // 2
 print("On the x-axis.")
case (0, _, 0): // 3
 print("On the y-axis.")
case (0, 0, _): // 4
 print("On the z-axis.")
default: // 5
 print("Somewhere in space")
}

Matches precisely the case where the value is (0,0,0). This is the origin of 3D space.1.
Matches y=0, z=0 and any value of x. This means the coordinate is on the x- axis.2.
Matches x=0, z=0 and any value of y. This means the coordinate is on they- axis.3.
Matches x=0, y=0 and any value of z. This means the coordinate is on the z- axis.4.
Matches the remainder of coordinates.5.

Note: using the underscore to mean that you don't care about the value.

If you don't want to ignore the value, then you can use it in your switch statement, like this:

let coordinates: (x: Int, y: Int, z: Int) = (3, 2, 5)

switch (coordinates) {
case (0, 0, 0):
 print("Origin")
case (let x, 0, 0):
 print("On the x-axis at x = \(x)")
case (0, let y, 0):
 print("On the y-axis at y = \(y)")
case (0, 0, let z):
 print("On the z-axis at z = \(z)")
case (let x, let y, let z):
 print("Somewhere in space at x = \(x), y = \(y), z = \(z)")
}

Here, the axis cases use the let syntax to pull out the pertinent values. The code then prints the values using string

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 65

interpolation to build the string.

Note: you don't need a default in this switch statement. This is because the final case is essentially the default—it
matches anything, because there are no constraints on any part of the tuple. If the switch statement exhausts all
possible values with its cases, then no default is necessary.

We can also use the let-where syntax to match more complex cases. For example:

let coordinates: (x: Int, y: Int, z: Int) = (3, 2, 5)

switch (coordinates) {
case (let x, let y, _) where y == x:
 print("Along the y = x line.")
case (let x, let y, _) where y == x * x:
 print("Along the y = x^2 line.")
default:
break
}

Here, We match the "y equals x" and "y equals x squared" lines.

Section 12.5: Using the where statement in a switch
The where statement may be used within a switch case match to add additional criteria required for a positive
match. The following example checks not only for the range, but also if the number is odd or even:

switch (temperature) {
 case 0...49 where temperature % 2 == 0:
 print("Cold and even")

 case 50...79 where temperature % 2 == 0:
 print("Warm and even")

 case 80...110 where temperature % 2 == 0:
 print("Hot and even")

 default:
 print("Temperature out of range or odd")
}

Section 12.6: Matching Multiple Values
A single case in a switch statement can match on multiple values.

let number = 3
switch number {
case 1, 2:
 print("One or Two!")
case 3:
 print("Three!")
case 4, 5, 6:
 print("Four, Five or Six!")
default:
 print("Not One, Two, Three, Four, Five or Six")
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 66

Section 12.7: Switch and Enums
The Switch statement works very well with Enum values

enum CarModel {
 case Standard, Fast, VeryFast
}

let car = CarModel.Standard

switch car {
case .Standard: print("Standard")
case .Fast: print("Fast")
case .VeryFast: print("VeryFast")
}

Since we provided a case for each possible value of car, we omit the default case.

Section 12.8: Switches and tuples
Switches can switch on tuples:

public typealias mdyTuple = (month: Int, day: Int, year: Int)

let fredsBirthday = (month: 4, day: 3, year: 1973)

switch theMDY
{
//You can match on a literal tuple:
case (fredsBirthday):
 message = "\(date) \(prefix) the day Fred was born"

//You can match on some of the terms, and ignore others:
case (3, 15, _):
 message = "Beware the Ides of March"

//You can match on parts of a literal tuple, and copy other elements
//into a constant that you use in the body of the case:
case (bobsBirthday.month, bobsBirthday.day, let year) where year > bobsBirthday.year:
 message = "\(date) \(prefix) Bob's \(possessiveNumber(year - bobsBirthday.year))" +
 "birthday"

//You can copy one or more elements of the tuple into a constant and then
//add a where clause that further qualifies the case:
case (susansBirthday.month, susansBirthday.day, let year)
 where year > susansBirthday.year:
 message = "\(date) \(prefix) Susan's " +
 "\(possessiveNumber(year - susansBirthday.year)) birthday"

//You can match some elements to ranges:.
case (5, 1...15, let year):
 message = "\(date) \(prefix) in the first half of May, \(year)"
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 67

Section 12.9: Satisfy one of multiple constraints using switch
You can create a tuple and use a switch like so:

var str: String? = "hi"
var x: Int? = 5

switch (str, x) {
case (.Some,.Some):
 print("Both have values")
case (.Some, nil):
 print("String has a value")
case (nil, .Some):
 print("Int has a value")
case (nil, nil):
 print("Neither have values")
}

Section 12.10: Matching based on class - great for
prepareForSegue
You can also make a switch statement switch based on the class of the thing you're switching on.

An example where this is useful is in prepareForSegue. I used to switch based on the segue identifier, but that's
fragile. if you change your storyboard later and rename the segue identifier, it breaks your code. Or, if you use
segues to multiple instances same view controller class (but different storyboard scenes) then you can't use the
segue identifier to figure out the class of the destination.

Swift switch statements to the rescue.

Use Swift case let var as Class syntax, like this:

Version < 3.0

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 switch segue.destinationViewController {
 case let fooViewController as FooViewController:
 fooViewController.delegate = self

 case let barViewController as BarViewController:
 barViewController.data = data

 default:
 break
 }
}
Version ≥ 3.0

In Swift 3 the sytax has changed slightly:

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
 switch segue.destinationViewController {
 case let fooViewController as FooViewController:
 fooViewController.delegate = self

 case let barViewController as BarViewController:
 barViewController.data = data

 default:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 68

 break
 }
}

Section 12.11: Switch fallthroughs
It is worth noting that in swift, unlike other languages people are familiar with, there is an implicit break at the end
of each case statement. In order to follow through to the next case (i.e. have multiple cases execute) you need to
use fallthrough statement.

switch(value) {
case 'one':
 // do operation one
 fallthrough
case 'two':
 // do this either independant, or in conjunction with first case
default:
 // default operation
}

this is useful for things like streams.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 69

Chapter 13: Optionals
“ An optional value either contains a value or contains nil to indicate that a value is missing”

Excerpt From: Apple Inc. “The Swift Programming Language (Swift 3.1 Edition).” iBooks. https://itun.es/us/k5SW7.l

Basic optional use cases include: for a constant (let), use of an optional within a loop (if-let), safely unwrapping an
optional value within a method (guard-let), and as part of switch loops (case-let), defaulting to a value if nil, using
the coalesce operator (??)

Section 13.1: Types of Optionals
Optionals are a generic enum type that acts as a wrapper. This wrapper allows a variable to have one of two states:
the value of the user-defined type or nil, which represents the absence of a value.

This ability is particularly important in Swift because one of the stated design objectives of the language is to work
well with Apple's frameworks. Many (most) of Apple's frameworks utilize nil due to its ease of use and significance
to programming patterns and API design within Objective-C.

In Swift, for a variable to have a nil value, it must be an optional. Optionals can be created by appending either a !
or a ? to the variable type. For example, to make an Int optional, you could use

var numberOne: Int! = nil
var numberTwo: Int? = nil

? optionals must be explicitly unwrapped, and should be used if you aren't certain whether or not the variable will
have a value when you access it. For example, when turning a string into an Int, the result is an optional Int?,
because nil will be returned if the string is not a valid number

let str1 = "42"
let num1: Int? = Int(str1) // 42

let str2 = "Hello, World!"
let num2: Int? = Int(str2) // nil

! optionals are automatically unwrapped, and should only be used when you are certain that the variable will have a
value when you access it. For example, a global UIButton! variable that is initialized in viewDidLoad()

//myButton will not be accessed until viewDidLoad is called,
//so a ! optional can be used here
var myButton: UIButton!

override func viewDidLoad(){
 self.myButton = UIButton(frame: self.view.frame)
 self.myButton.backgroundColor = UIColor.redColor()
 self.view.addSubview(self.myButton)
}

Section 13.2: Unwrapping an Optional
In order to access the value of an Optional, it needs to be unwrapped.

You can conditionally unwrap an Optional using optional binding and force unwrap an Optional using the ! operator.

https://itun.es/us/k5SW7.l
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 70

Conditionally unwrapping effectively asks "Does this variable have a value?" while force unwrapping says "This
variable has a value!".

If you force unwrap a variable that is nil, your program will throw an unexpectedly found nil while unwrapping an
optional exception and crash, so you need to consider carefully if using ! is appropriate.

var text: String? = nil
var unwrapped: String = text! //crashes with "unexpectedly found nil while unwrapping an Optional
value"

For safe unwrapping, you can use an if-let statement, which will not throw an exception or crash if the wrapped
value is nil:

var number: Int?
if let unwrappedNumber = number { // Has `number` been assigned a value?
 print("number: \(unwrappedNumber)") // Will not enter this line
} else {
 print("number was not assigned a value")
}

Or, a guard statement:

var number: Int?
guard let unwrappedNumber = number else {
 return
}
print("number: \(unwrappedNumber)")

Note that the scope of the unwrappedNumber variable is inside the if-let statement and outside of the guard block.

You can chain unwrapping of many optionals, this is mainly useful in cases that your code requires more then
variable to run correctly:

var firstName:String?
var lastName:String?

if let fn = firstName, let ln = lastName {
 print("\(fn) + \(ln)")//pay attention that the condition will be true only if both optionals
are not nil.
}

Note that all the variables have to be unwrapped in order to pass successfully the test, otherwise you would have
no way to determine which variables were unwrapped and which weren't.

You can chain conditional statements using your optionals immediately after it is unwrapped. This means no
nested if - else statements!

var firstName:String? = "Bob"
var myBool:Bool? = false

if let fn = firstName, fn == "Bob", let bool = myBool, !bool {
 print("firstName is bob and myBool was false!")
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 71

Section 13.3: Nil Coalescing Operator
You can use the nil coalescing operator to unwrap a value if it is non-nil, otherwise provide a different value:

func fallbackIfNil(str: String?) -> String {
 return str ?? "Fallback String"
}
print(fallbackIfNil("Hi")) // Prints "Hi"
print(fallbackIfNil(nil)) // Prints "Fallback String"

This operator is able to short-circuit, meaning that if the left operand is non-nil, the right operand will not be
evaluated:

func someExpensiveComputation() -> String { ... }

var foo : String? = "a string"
let str = foo ?? someExpensiveComputation()

In this example, as foo is non-nil, someExpensiveComputation() will not be called.

You can also chain multiple nil coalescing statements together:

var foo : String?
var bar : String?

let baz = foo ?? bar ?? "fallback string"

In this example baz will be assigned the unwrapped value of foo if it is non-nil, otherwise it will be assigned the
unwrapped value of bar if it is non-nil, otherwise it will be assigned the fallback value.

Section 13.4: Optional Chaining
You can use Optional Chaining in order to call a method, access a property or subscript an optional. This is done by
placing a ? between the given optional variable and the given member (method, property or subscript).

struct Foo {
 func doSomething() {
 print("Hello World!")
 }
}

var foo : Foo? = Foo()

foo?.doSomething() // prints "Hello World!" as foo is non-nil

If foo contains a value, doSomething() will be called on it. If foo is nil, then nothing bad will happen – the code will
simply fail silently and continue executing.

var foo : Foo? = nil

foo?.doSomething() // will not be called as foo is nil

(This is similar behaviour to sending messages to nil in Objective-C)

The reason that Optional Chaining is named as such is because ‘optionality’ will be propagated through the
members you call/access. What this means is that the return values of any members used with optional chaining

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/BasicOperators.html#//apple_ref/doc/uid/TP40014097-CH6-ID72
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html#//apple_ref/doc/uid/TP40014097-CH21-ID245
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Methods.html#//apple_ref/doc/uid/TP40014097-CH15-ID234
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Properties.html#//apple_ref/doc/uid/TP40014097-CH14-ID254
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Subscripts.html#//apple_ref/doc/uid/TP40014097-CH16-ID305
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 72

will be optional, regardless of whether they are typed as optional or not.

struct Foo {
 var bar : Int
 func doSomething() { ... }
}

let foo : Foo? = Foo(bar: 5)
print(foo?.bar) // Optional(5)

Here foo?.bar is returning an Int? even though bar is non-optional, as foo itself is optional.

As optionality is propagated, methods returning Void will return Void? when called with optional chaining. This can
be useful in order to determine whether the method was called or not (and therefore if the optional has a value).

let foo : Foo? = Foo()

if foo?.doSomething() != nil {
 print("foo is non-nil, and doSomething() was called")
} else {
 print("foo is nil, therefore doSomething() wasn't called")
}

Here we’re comparing the Void? return value with nil in order to determine whether the method was called (and
therefore whether foo is non-nil).

Section 13.5: Overview - Why Optionals?
Often when programming it is necessary to make some distinction between a variable that has a value and one that
does not. For reference types, such as C Pointers, a special value such as null can be used to indicate that the
variable has no value. For intrinsic types, such as an integer, it is more difficult. A nominated value, such as -1 can
be used, but this relies on interpretation of the value. It also eliminates that "special" value from normal use.

To address this, Swift allows any variable to be declared as an optional. This is indicated by the use of a ? or ! after
the type (See Types of optionals)

For example,

var possiblyInt: Int?

declares a variable that may or may not contain an integer value.

The special value nil indicates that no value is currently assigned to this variable.

possiblyInt = 5 // PossiblyInt is now 5
possiblyInt = nil // PossiblyInt is now unassigned

nil can also be used to test for an assigned value:

if possiblyInt != nil {
 print("possiblyInt has the value \(possiblyInt!)")
}

Note the use of ! in the print statement to unwrap the optional value.

As an example of a common use of optionals, consider a function that returns an integer from a string containing

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 73

digits; It is possible that the string may contain non-digit characters, or may even be empty.

How can a function that returns a simple Int indicate failure? It cannot do so by returning any specific value as this
would preclude that value from being parsed from the string.

var someInt
someInt = parseInt("not an integer") // How would this function indicate failure?

In Swift, however, that function can simply return an optional Int. Then failure is indicated by return value of nil.

var someInt?
someInt = parseInt("not an integer") // This function returns nil if parsing fails
if someInt == nil {
 print("That isn't a valid integer")
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 74

Chapter 14: Conditionals
Conditional expressions, involving keywords such as if, else if, and else, provide Swift programs with the ability to
perform different actions depending on a Boolean condition: True or False. This section covers the use of Swift
conditionals, Boolean logic, and ternary statements.

Section 14.1: Optional binding and "where" clauses
Optionals must be unwrapped before they can be used in most expressions. if let is an optional binding, which
succeeds if the optional value was not nil:

let num: Int? = 10 // or: let num: Int? = nil

if let unwrappedNum = num {
 // num has type Int?; unwrappedNum has type Int
 print("num was not nil: \(unwrappedNum + 1)")
} else {
 print("num was nil")
}

You can reuse the same name for the newly bound variable, shadowing the original:

// num originally has type Int?
if let num = num {
 // num has type Int inside this block
}

Version ≥ 1.2 Version < 3.0

Combine multiple optional bindings with commas (,):

if let unwrappedNum = num, let unwrappedStr = str {
 // Do something with unwrappedNum & unwrappedStr
} else if let unwrappedNum = num {
 // Do something with unwrappedNum
} else {
 // num was nil
}

Apply further constraints after the optional binding using a where clause:

if let unwrappedNum = num e unwrappedNum % 2 == 0 { print("num is non-nil, and it's an even number") }

If you're feeling adventurous, interleave any number of optional bindings and where clauses:

if let num = num // num must be non-nil
 where num % 2 == 1, // num must be odd
 let str = str, // str must be non-nil
 let firstChar = str.characters.first // str must also be non-empty
 where firstChar != "x" // the first character must not be "x"
{
 // all bindings & conditions succeeded!
}
Version ≥ 3.0

In Swift 3, where clauses have been replaced (SE-0099): simply use another , to separate optional bindings and
boolean conditions.

https://github.com/apple/swift-evolution/blob/master/proposals/0099-conditionclauses.md
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 75

if let unwrappedNum = numwrappedNum % 2 == 0 { print("num is non-nil, and it's an even number") } if let num =
num, // num must be non-nil num % 2 == 1, // num must be odd let str = str, // str must be non-nil let firstChar =
str.characters.first, // str must also be non-empty firstChar != "x" // the first character must not be "x" { // all
bindings & conditions succeeded! }

Section 14.2: Using Guard
Version ≥ 2.0

Guard checks for a condition, and if it is false, it enters the branch. Guard check branches must leave its enclosing
block either via return, break, or continue (if applicable); failing to do so results in a compiler error. This has the
advantage that when a guard is written it's not possible to let the flow continue accidentally (as would be possible
with an if).

Using guards can help keep nesting levels low, which usually improves the readability of the code.

func printNum(num: Int) {
 guard num == 10 else {
 print("num is not 10")
 return
 }
 print("num is 10")
}

Guard can also check if there is a value in an optional, and then unwrap it in the outer scope:

func printOptionalNum(num: Int?) {
 guard let unwrappedNum = num else {
 print("num does not exist")
 return
 }
 print(unwrappedNum)
}

Guard can combine optional unwrapping and condition check using where keyword:

func printOptionalNum(num: Int?) {
guard let unwrappedNum = num, unwrappedNum == 10 else {
 print("num does not exist or is not 10")
 return
}
print(unwrappedNum)
}

Section 14.3: Basic conditionals: if-statements
An if statement checks whether a Bool condition is true:

let num = 10

if num == 10 {
 // Code inside this block only executes if the condition was true.
 print("num is 10")
}

let condition = num == 10 // condition's type is Bool
if condition {

https://stackoverflow.com/questions/36370513/how-to-use-guard-in-swift-instead-of-if
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Bool_Structure/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 76

 print("num is 10")
}

if statements accept else if and else blocks, which can test alternate conditions and provide a fallback:

let num = 10
if num < 10 { // Execute the following code if the first condition is true.
 print("num is less than 10")
} else if num == 10 { // Or, if not, check the next condition...
 print("num is 10")
} else { // If all else fails...
 print("all other conditions were false, so num is greater than 10")
}

Basic operators like && and || can be used for multiple conditions:

The logical AND operator
let num = 10
let str = "Hi"
if num == 10 && str == "Hi" {
 print("num is 10, AND str is \"Hi\"")
}

If num == 10 was false, the second value wouldn't be evaluated. This is known as short-circuit evaluation.

The logical OR operator
if num == 10 || str == "Hi" {
 print("num is 10, or str is \"Hi\")
}

If num == 10 is true, the second value wouldn't be evaluated.

The logical NOT operator
if !str.isEmpty {
 print("str is not empty")
}

Section 14.4: Ternary operator
Conditions may also be evaluated in a single line using the ternary operator:

If you wanted to determine the minimum and maximum of two variables, you could use if statements, like so:

let a = 5
let b = 10
let min: Int

if a < b {
 min = a
} else {
 min = b
}

let max: Int

if a > b {
 max = a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 77

} else {
 max = b
}

The ternary conditional operator takes a condition and returns one of two values, depending on whether the
condition was true or false. The syntax is as follows: This is equivalent of having the expression:

(<CONDITION>) ? <TRUE VALUE> : <FALSE VALUE>

The above code can be rewritten using ternary conditional operator as below:

let a = 5
let b = 10
let min = a < b ? a : b
let max = a > b ? a : b

In the first example, the condition is a < b. If this is true, the result assigned back to min will be of a; if it's false, the
result will be the value of b.

Note: Because finding the greater or smaller of two numbers is such a common operation, the Swift standard
library provides two functions for this purpose: max and min.

Section 14.5: Nil-Coalescing Operator
The nil-coalescing operator <OPTIONAL> ?? <DEFAULT VALUE> unwraps the <OPTIONAL> if it contains a value, or
returns <DEFAULT VALUE> if is nil. <OPTIONAL> is always of an optional type. <DEFAULT VALUE> must match the type
that is stored inside <OPTIONAL>.

The nil-coalescing operator is shorthand for the code below that uses a ternary operator:

a != nil ? a! : b

this can be verified by the code below:

(a ?? b) == (a != nil ? a! : b) // outputs true

Time For An Example

let defaultSpeed:String = "Slow"
var userEnteredSpeed:String? = nil

print(userEnteredSpeed ?? defaultSpeed) // outputs "Slow"

userEnteredSpeed = "Fast"
print(userEnteredSpeed ?? defaultSpeed) // outputs "Fast"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 78

Chapter 15: Error Handling
Section 15.1: Error handling basics
Functions in Swift may return values, throw errors, or both:

func reticulateSplines() // no return value and no error
func reticulateSplines()

nt // always returns a value func reticulateSplines() throws // no return value, but may throw an error func
reticulateSplines() throws -> Int // may either return a value or throw an error

Any value which conforms to the ErrorType protocol (including NSError objects) can be thrown as an error.
Enumerations provide a convenient way to define custom errors:

Version ≥ 2.0 Version ≤ 2.2

enum NetworkError: ErrorType {
 case Offline
 case ServerError(String)
}
Version = 3.0

enum NetworkError: Error {
 // Swift 3 dictates that enum cases should be `lowerCamelCase`
 case offline
 case serverError(String)
}

An error indicates a non-fatal failure during program execution, and is handled with the specialized control-flow
constructs do/catch, throw, and try.

func fetchResource(resource: NSURL) throws -> String {
 if let (statusCode, responseString) = /* ...from elsewhere...*/ {
 if case 500..<600 = statusCode {
 throw NetworkError.serverError(responseString)
 } else {
 return responseString
 }
 } else {
 throw NetworkError.offline
 }
}

Errors can be caught with do/catch:

do {
 let response = try fetchResource(resURL)
 // If fetchResource() didn't throw an error, execution continues here:
 print("Got response: \\(response)")
 ...
} catch {
 // If an error is thrown, we can handle it here.
 print("Whoops, couldn't fetch resource: \\(error)")
}

Any function which can throw an error must be called using try, try?, or try!:

// error: call can throw but is not marked with 'try'

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_ErrorType_Protocol/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 79

let response = fetchResource(resURL)

// "try" works within do/catch, or within another throwing function:
do {
 let response = try fetchResource(resURL)
} catch {
 // Handle the error
}

func foo() throws {
 // If an error is thrown, continue passing it up to the caller.
 let response = try fetchResource(resURL)
}

// "try?" wraps the function's return value in an Optional (nil if an error was thrown).
if let response = try? fetchResource(resURL) {
 // no error was thrown
}

// "try!" crashes the program at runtime if an error occurs.
let response = try! fetchResource(resURL)

Section 15.2: Catching dierent error types
Let's create our own error type for this example.

Version = 2.2

enum CustomError: ErrorType {
 case SomeError
 case AnotherError
}

func throwing() throws {
 throw CustomError.SomeError
}
Version = 3.0

enum CustomError: Error {
 case someError
 case anotherError
}

func throwing() throws {
 throw CustomError.someError
}

The Do-Catch syntax allows to catch a thrown error, and automatically creates a constant named error available in
the catch block:

do {
 try throwing()
} catch {
 print(error)
}

You can also declare a variable yourself:

do {
 try throwing()
} catch let oops {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 80

 print(oops)
}

It's also possible to chain different catch statements. This is convenient if several types of errors can be thrown in
the Do block.

Here the Do-Catch will first attempt to cast the error as a CustomError, then as an NSError if the custom type was
not matched.

Version = 2.2

do {
 try somethingMayThrow()
} catch let custom as CustomError {
 print(custom)
} catch let error as NSError {
 print(error)
}
Version = 3.0

In Swift 3, no need to explicitly downcast to NSError.

do {
 try somethingMayThrow()
} catch let custom as CustomError {
 print(custom)
} catch {
 print(error)
}

Section 15.3: Catch and Switch Pattern for Explicit Error
Handling
class Plane {

 enum Emergency: ErrorType {
 case NoFuel
 case EngineFailure(reason: String)
 case DamagedWing
 }

 var fuelInKilograms: Int

 //... init and other methods not shown

 func fly() throws {
 // ...
 if fuelInKilograms <= 0 {
 // uh oh...
 throw Emergency.NoFuel
 }
 }

}

In the client class:

let airforceOne = Plane()
do {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 81

 try airforceOne.fly()
} catch let emergency as Plane.Emergency {
 switch emergency {
 case .NoFuel:
 // call nearest airport for emergency landing
 case .EngineFailure(let reason):
 print(reason) // let the mechanic know the reason
 case .DamagedWing:
 // Assess the damage and determine if the president can make it
 }
}

Section 15.4: Disabling Error Propagation
The creators of Swift have put a lot of attention into making the language expressive and error handling is exactly
that, expressive. If you try to invoke a function that can throw an error, the function call needs to be preceded by
the try keyword. The try keyword isn't magical. All it does, is make the developer aware of the throwing ability of the
function.

For example, the following code uses a loadImage(atPath:) function, which loads the image resource at a given path
or throws an error if the image can’t be loaded. In this case, because the image is shipped with the application, no
error will be thrown at runtime, so it is appropriate to disable error propagation.

let photo = try! loadImage(atPath: "./Resources/John Appleseed.jpg")

Section 15.5: Create custom Error with localized description
Create enum of custom errors

enum RegistrationError: Error {
 case invalidEmail
 case invalidPassword
 case invalidPhoneNumber
}

Create extension of RegistrationError to handle the Localized description.

extension RegistrationError: LocalizedError {
 public var errorDescription: String? {
 switch self {
 case .invalidEmail:
 return NSLocalizedString("Description of invalid email address", comment: "Invalid
Email")
 case .invalidPassword:
 return NSLocalizedString("Description of invalid password", comment: "Invalid
Password")
 case .invalidPhoneNumber:
 return NSLocalizedString("Description of invalid phoneNumber", comment: "Invalid Phone
Number")
 }
 }
}

Handle error:

let error: Error = RegistrationError.invalidEmail

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 82

print(error.localizedDescription)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 83

Chapter 16: Loops
Section 16.1: For-in loop
The for-in loop allows you to iterate over any sequence.

Iterating over a range

You can iterate over both half-open and closed ranges:

for i in 0..<3 {
 print(i)
}

for i in 0...2 {
 print(i)
}

// Both print:
// 0
// 1
// 2

Iterating over an array or set
let names = ["James", "Emily", "Miles"]

for name in names {
 print(name)
}

// James
// Emily
// Miles

Version = 2.1 Version = 2.2

If you need the index for each element in the array, you can use the enumerate() method on SequenceType.

for (index, name) in names.enumerate() {
 print("The index of \(name) is \(index).")
}

// The index of James is 0.
// The index of Emily is 1.
// The index of Miles is 2.

enumerate() returns a lazy sequence containing pairs of elements with consecutive Ints, starting from 0. Therefore
with arrays, these numbers will correspond to the given index of each element – however this may not be the case
with other kinds of collections.

Version ≥ 3.0

In Swift 3, enumerate() has been renamed to enumerated():

for (index, name) in names.enumerated() {
 print("The index of \(name) is \(index).")
}

http://swiftdoc.org/v2.2/protocol/SequenceType/#func--enumerate
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--enumerate
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--enumerate
http://swiftdoc.org/v2.2/protocol/SequenceType/
http://swiftdoc.org/v3.0/protocol/Sequence/#func--enumerated
http://swiftdoc.org/v3.0/protocol/Sequence/#func--enumerated
http://swiftdoc.org/v3.0/protocol/Sequence/#func--enumerated
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 84

Iterating over a dictionary
let ages = ["James": 29, "Emily": 24]

for (name, age) in ages {
 print(name, "is", age, "years old.")
}

// Emily is 24 years old.
// James is 29 years old.

Iterating in reverse
Version = 2.1 Version = 2.2

You can use the reverse() method on SequenceType in order to iterate over any sequence in reverse:

for i in (0..<3).reverse() {
 print(i)
}

for i in (0...2).reverse() {
 print(i)
}

// Both print:
// 2
// 1
// 0

let names = ["James", "Emily", "Miles"]

for name in names.reverse() {
 print(name)
}

// Miles
// Emily
// James
Version ≥ 3.0

In Swift 3, reverse() has been renamed to reversed():

for i in (0..<3).reversed() {
 print(i)
}

Iterating over ranges with custom stride
Version = 2.1 Version = 2.2

By using the stride(_:_:) methods on Strideable you can iterate over a range with a custom stride:

for i in 4.stride(to: 0, by: -2) {
 print(i)
}

// 4
// 2

for i in 4.stride(through: 0, by: -2) {
 print(i)
}

http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reverse
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reverse
http://swiftdoc.org/v2.2/protocol/SequenceType/#func--reverse
http://swiftdoc.org/v2.2/protocol/SequenceType/
http://swiftdoc.org/v3.0/protocol/Sequence/#func--reversed
http://swiftdoc.org/v3.0/protocol/Sequence/#func--reversed
http://swiftdoc.org/v3.0/protocol/Sequence/#func--reversed
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/#func--stride-through_by_
http://swiftdoc.org/v2.2/protocol/Strideable/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 85

// 4
// 2
// 0

Version = 1.2 Version ≥ 3.0

In Swift 3, the stride(_:_:) methods on Stridable have been replaced by the global stride(_:_:_:) functions:

for i in stride(from: 4, to: 0, by: -2) {
 print(i)
}

for i in stride(from: 4, through: 0, by: -2) {
 print(i)
}

Section 16.2: Repeat-while loop
Similar to the while loop, only the control statement is evaluated after the loop. Therefore, the loop will always
execute at least once.

var i: Int = 0

repeat {
 print(i)
 i += 1
} while i < 3

// 0
// 1
// 2

Section 16.3: For-in loop with filtering
where clause1.

By adding a where clause you can restrict the iterations to ones that satisfy the given condition.

for i in 0..<5 where i % 2 == 0 {
 print(i)
}

// 0
// 2
// 4

let names = ["James", "Emily", "Miles"]

for name in names where name.characters.contains("s") {
 print(name)
}

// James
// Miles

case clause2.

It's useful when you need to iterate only through the values that match some pattern:

http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
http://swiftdoc.org/v3.0/func/stride/#func-stride-t_-strideable-from_-t-to_-t-by_-t-stride
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 86

let points = [(5, 0), (31, 0), (5, 31)]
for case (_, 0) in points {
 print("point on x-axis")
}

//point on x-axis
//point on x-axis

Also you can filter optional values and unwrap them if appropriate by adding ? mark after binding constant:

let optionalNumbers = [31, 5, nil]
for case let number? in optionalNumbers {
 print(number)
}

//31
//5

Section 16.4: Sequence Type forEach block
A type that conforms to the SequenceType protocol can iterate through it's elements within a closure:

collection.forEach { print($0) }

The same could also be done with a named parameter:

collection.forEach { item in
 print(item)
}

*Note: Control flow statements (such as break or continue) may not be used in these blocks. A return can be called,
and if called, will immediately return the block for the current iteration (much like a continue would). The next
iteration will then execute.

let arr = [1,2,3,4]

arr.forEach {

 // blocks for 3 and 4 will still be called
 if $0 == 2 {
 return
 }
}

Section 16.5: while loop
A while loop will execute as long as the condition is true.

var count = 1

while count < 10 {
 print("This is the \(count) run of the loop")
 count += 1
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 87

Section 16.6: Breaking a loop
A loop will execute as long as its condition remains true, but you can stop it manually using the break keyword. For
example:

var peopleArray = ["John", "Nicole", "Thomas", "Richard", "Brian", "Novak", "Vick", "Amanda",
"Sonya"]
var positionOfNovak = 0

for person in peopleArray {
 if person == "Novak" { break }
 positionOfNovak += 1
}

print("Novak is the element located on position [\(positionOfNovak)] in peopleArray.")
//prints out: Novak is the element located on position 5 in peopleArray. (which is true)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 88

Chapter 17: Protocols
Protocols are a way of specifying how to use an object. They describe a set of properties and methods which a
class, structure, or enum should provide, although protocols pose no restrictions on the implementation.

Section 17.1: Protocol Basics
About Protocols

A Protocol specifies initialisers, properties, functions, subscripts and associated types required of a Swift object type
(class, struct or enum) conforming to the protocol. In some languages similar ideas for requirement specifications
of subsequent objects are known as ‘interfaces’.

A declared and defined Protocol is a Type, in and of itself, with a signature of its stated requirements, somewhat
similar to the manner in which Swift Functions are a Type based on their signature of parameters and returns.

Swift Protocol specifications can be optional, explicitly required and/or given default implementations via a facility
known as Protocol Extensions. A Swift Object Type (class, struct or enum) desiring to conform to a Protocol that’s
fleshed out with Extensions for all its specified requirements needs only state its desire to conform to be in full
conformance. The default implementations facility of Protocol Extensions can suffice to fulfil all obligations of
conforming to a Protocol.

Protocols can be inherited by other Protocols. This, in conjunction with Protocol Extensions, means Protocols can
and should be thought of as a significant feature of Swift.

Protocols and Extensions are important to realising Swift’s broader objectives and approaches to program design
flexibility and development processes. The primary stated purpose of Swift’s Protocol and Extension capability is
facilitation of compositional design in program architecture and development. This is referred to as Protocol
Oriented Programming. Crusty old timers consider this superior to a focus on OOP design.

Protocols define interfaces which can be implemented by any struct, class, or enum:

protocol MyProtocol {
 init(value: Int) // required initializer
 func doSomething() -> Bool // instance method
 var message: String { get } // instance read-only property
 var value: Int { get set } // read-write instance property
 subscript(index: Int) -> Int { get } // instance subscript
 static func instructions() -> String // static method
 static var max: Int { get } // static read-only property
 static var total: Int { get set } // read-write static property
}

Properties defined in protocols must either be annotated as { get } or { get set }. { get } means that the
property must be gettable, and therefore it can be implemented as any kind of property. { get set } means that
the property must be settable as well as gettable.

A struct, class, or enum may conform to a protocol:

struct MyStruct : MyProtocol {
 // Implement the protocol's requirements here
}
class MyClass : MyProtocol {
 // Implement the protocol's requirements here
}

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html#//apple_ref/doc/uid/TP40014097-CH25-ID269
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 89

enum MyEnum : MyProtocol {
 case caseA, caseB, caseC
 // Implement the protocol's requirements here
}

A protocol may also define a default implementation for any of its requirements through an extension:

extension MyProtocol {

 // default implementation of doSomething() -> Bool
 // conforming types will use this implementation if they don't define their own
 func doSomething() -> Bool {
 print("do something!")
 return true
 }
}

A protocol can be used as a type, provided it doesn't have associatedtype requirements:

func doStuff(object: MyProtocol) {
 // All of MyProtocol's requirements are available on the object
 print(object.message)
 print(object.doSomething())
}

let items : [MyProtocol] = [MyStruct(), MyClass(), MyEnum.caseA]

You may also define an abstract type that conforms to multiple protocols:

Version ≥ 3.0

With Swift 3 or better, this is done by separating the list of protocols with an ampersand (&):

func doStuff(object: MyProtocol & AnotherProtocol) {
 // ...
}

let items : [MyProtocol & AnotherProtocol] = [MyStruct(), MyClass(), MyEnum.caseA]
Version < 3.0

Older versions have syntax protocol<...> where the protocols are a comma-separated list between the angle
brackets <>.

protocol AnotherProtocol {
 func doSomethingElse()
}

func doStuff(object: protocol<MyProtocol, AnotherProtocol>) {

 // All of MyProtocol & AnotherProtocol's requirements are available on the object
 print(object.message)
 object.doSomethingElse()
}

// MyStruct, MyClass & MyEnum must now conform to both MyProtocol & AnotherProtocol
let items : [protocol<MyProtocol, AnotherProtocol>] = [MyStruct(), MyClass(), MyEnum.caseA]

Existing types can be extended to conform to a protocol:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 90

extension String : MyProtocol {
 // Implement any requirements which String doesn't already satisfy
}

Section 17.2: Delegate pattern
A delegate is a common design pattern used in Cocoa and CocoaTouch frameworks, where one class delegates
responsibility for implementing some functionality to another. This follows a principle of separation of concerns,
where the framework class implements generic functionality while a separate delegate instance implements the
specific use case.

Another way to look into delegate pattern is in terms of object communication. Objects often needs to talks to each
other and to do so an object need conform to a protocol in order to become a delegate of another Object. Once
this setup has been done, the other object talks back to its delegates when interesting things happens.

For example, A view in userinterface to display a list of data should be responsible only for the logic of how data is
displayed, not for deciding what data should be displayed.

Let's dive into a more concrete example. if you have two classes, a parent and a child:

class Parent { }
class Child { }

And you want to notify the parent of a change from the child.

In Swift, delegates are implemented using a protocol declaration and so we will declare a protocol which the
delegate will implement. Here delegate is the parent object.

protocol ChildDelegate: class {
 func childDidSomething()
}

The child needs to declare a property to store the reference to the delegate:

class Child {
 weak var delegate: ChildDelegate?
}

Notice the variable delegate is an optional and the protocol ChildDelegate is marked to be only implemented by
class type (without this the delegate variable can't be declared as a weak reference avoiding any retain cycle. This
means that if the delegate variable is no longer referenced anywhere else, it will be released). This is so the parent
class only registers the delegate when it is needed and available.

Also in order to mark our delegate as weak we must constrain our ChildDelegate protocol to reference types by
adding class keyword in protocol declaration.

In this example, when the child does something and needs to notify its parent, the child will call:

delegate?.childDidSomething()

If the delegate has been defined, the delegate will be notified that the child has done something.

The parent class will need to extend the ChildDelegate protocol to be able to respond to its actions. This can be
done directly on the parent class:

https://developer.apple.com/library/prerelease/content/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 91

class Parent: ChildDelegate {
 ...

 func childDidSomething() {
 print("Yay!")
 }
}

Or using an extension:

extension Parent: ChildDelegate {
 func childDidSomething() {
 print("Yay!")
 }
}

The parent also needs to tell the child that it is the child's delegate:

// In the parent
let child = Child()
child.delegate = self

By default a Swift protocol does not allow an optional function be implemented. These can only be specified if your
protocol is marked with the @objc attribute and the optional modifier.

For example UITableView implements the generic behavior of a table view in iOS, but the user must implement two
delegate classes called UITableViewDelegate and UITableViewDataSource that implement how the specific cells
look like and behave.

@objc public protocol UITableViewDelegate : NSObjectProtocol, UIScrollViewDelegate { // Display customization
optional public func tableView(tableView: UITableView, willDisplayCell cell: UITableViewCell, forRowAtIndexPath
indexPath: NSIndexPath) optional public func tableView(tableView: UITableView, willDisplayHeaderView view:
UIView, forSection section: Int) optional public func tableView(tableView: UITableView, willDisplayFooterView view:
UIView, forSection section: Int) optional public func tableView(tableView: UITableView, didEndDisplayingCell cell:
UITableViewCell, forRowAtIndexPath indexPath: NSIndexPath) ... }

You can implement this protocol by changing your class definition, for example:

class MyViewController : UIViewController, UITableViewDelegate

Any methods not marked optional in the protocol definition (UITableViewDelegate in this case) must be
implemented.

Section 17.3: Associated type requirements
Protocols may define associated type requirements using the associatedtype keyword:

protocol Container {

ciatedtype Element var count: Int { get } subscript(index: Int) -> Element { get set } }

Protocols with associated type requirements can only be used as generic constraints:

// These are allowed, because Container has associated type requirements: func displayValues(container:
Container) { ... } class MyClass { let container: Container } // > error: protocol 'Container' can only be used as a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 92

generic constraint // > because it has Self or associated type requirements // These are allowed: func
displayValues<T: Container>(container: T) { ... } class MyClass<T: Container> { let container: T }

A type which conforms to the protocol may satisfy an associatedtype requirement implicitly, by providing a given
type where the protocol expects the associatedtype to appear:

struct ContainerOfOne<T>: Container {
 let count = 1 // satisfy the count requirement
 var value: T

 // satisfy the subscript associatedtype requirement implicitly,
 // by defining the subscript assignment/return type as T
 // therefore Swift will infer that T == Element
 subscript(index: Int) ->

> { get { precondition(index == 0) return value } set { precondition(index == 0) value = newValue } } } let container =
ContainerOfOne(value: "Hello")

(Note that to add clarity to this example, the generic placeholder type is named T – a more suitable name would be
Element, which would shadow the protocol's associatedtype Element. The compiler will still infer that the generic
placeholder Element is used to satisfy the associatedtype Element requirement.)

An associatedtype may also be satisfied explicitly through the use of a typealias:

struct ContainerOfOne<T>: Container {

alias Element = T subscript(index: Int) -> Element { ... } // ... }

The same goes for extensions:

// Expose an 8-bit integer as a collection of boolean values (one for each bit).
extension UInt8: Container {

 // as noted above, this typealias can be inferred
 typealias Element = Bool

 var count: Int { return 8 }
 subscript(index: Int) -> Bool {
 get {
 precondition(0 <= index && index < 8)
 return self & 1 << UInt8(index) != 0
 }
 set {
 precondition(0 <= index && index < 8)
 if newValue {
 self |= 1 << UInt8(index)
 } else {
 self &= ~(1 << UInt8(index))
 }
 }
 }
}

If the conforming type already satisfies the requirement, no implementation is needed:

extension Array: Container {} // Array satisfies all requirements, including Element

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 93

Section 17.4: Class-Only Protocols
A protocol may specify that only a class can implement it through using the class keyword in its inheritance list.
This keyword must appear before any other inherited protocols in this list.

protocol ClassOnlyProtocol: s, SomeOtherProtocol { // Protocol requirements }

If a non-class type tries to implement ClassOnlyProtocol, a compiler error will be generated.

struct MyStruct: ClassOnlyProtocol {
 // error: Non-class type 'MyStruct' cannot conform to class protocol 'ClassOnlyProtocol'
}

Other protocols may inherit from the ClassOnlyProtocol, but they will have the same class-only requirement.

protocol MyProtocol: ClassOnlyProtocol {
 // ClassOnlyProtocol Requirements
 // MyProtocol Requirements
}

class MySecondClass: MyProtocol {
 // ClassOnlyProtocol Requirements
 // MyProtocol Requirements
}

Reference semantics of class-only protocols

Using a class-only protocol allows for reference semantics when the conforming type is unknown.

protocol Foo : class {
 var bar : String { get set }
}

func takesAFoo(foo:Foo) {

 // this assignment requires reference semantics,
 // as foo is a let constant in this scope.
 foo.bar = "new value"
}

In this example, as Foo is a class-only protocol, the assignment to bar is valid as the compiler knows that foo is a
class type, and therefore has reference semantics.

If Foo was not a class-only protocol, a compiler error would be yielded – as the conforming type could be a value
type, which would require a var annotation in order to be mutable.

protocol Foo {
 var bar : String { get set }
}

func takesAFoo(foo:Foo) {
 foo.bar = "new value" // error: Cannot assign to property: 'foo' is a 'let' constant
}

func takesAFoo(foo:Foo) {

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html#//apple_ref/doc/uid/TP40014097-CH13-ID88
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html#//apple_ref/doc/uid/TP40014097-CH13-ID88
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 94

foo = foo // mutable copy of foo foo.bar = "new value" // no error – satisfies both reference and value semantics }
Weak variables of protocol type

When applying the weak modifier to a variable of protocol type, that protocol type must be class-only, as weak can
only be applied to reference types.

weak var weakReference : ClassOnlyProtocol?

Section 17.5: Protocol extension for a specific conforming
class
You can write the default protocol implementation for a specific class.

protocol MyProtocol {
 func doSomething()
}

extension MyProtocol where Self: UIViewController {
 func doSomething() {
 print("UIViewController default protocol implementation")
 }
}

class MyViewController: UIViewController, MyProtocol { }

let vc = MyViewController()
vc.doSomething() // Prints "UIViewController default protocol implementation"

Section 17.6: Using the RawRepresentable protocol (Extensible
Enum)
// RawRepresentable has an associatedType RawValue.
// For this struct, we will make the compiler infer the type
// by implementing the rawValue variable with a type of String
//
// Compiler infers RawValue = String without needing typealias
//
struct NotificationName: RawRepresentable {
 let rawValue: String

 static let dataFinished = NotificationNames(rawValue: "DataFinishedNotification")
}

This struct can be extended elsewhere to add cases

extension NotificationName {
 static let documentationLaunched = NotificationNames(rawValue:
"DocumentationLaunchedNotification")
}

And an interface can design around any RawRepresentable type or specifically your enum struct

func post(notification notification: NotificationName) -> Void {
 // use notification.rawValue
}

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html#//apple_ref/doc/uid/TP40014097-CH20-ID52
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html#//apple_ref/doc/uid/TP40014097-CH20-ID52
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 95

At call site, you can use dot syntax shorthand for the typesafe NotificationName

post(notification: .dataFinished)

Using generic RawRepresentable function

// RawRepresentable has an associate type, so the
// method that wants to accept any type conforming to
// RawRepresentable needs to be generic
func observe<T: RawRepresentable>(object: T) -> Void {
 // object.rawValue
}

Section 17.7: Implementing Hashable protocol
Types used in Sets and Dictionaries(key) must conform to Hashable protocol which inherits from Equatable
protocol.

Custom type conforming to Hashable protocol must implement

A calculated property hashValue
Define one of the equality operators i.e. == or !=.

Following example implements Hashable protocol for a custom struct:

struct Cell {
 var row: Int
 var col: Int

 init(_ row: Int, _ col: Int) {
 self.row = row
 self.col = col
 }
}

extension Cell: Hashable {

 // Satisfy Hashable requirement
 var hashValue: Int {
 get {
 return row.hashValue^col.hashValue
 }
 }

 // Satisfy Equatable requirement
 static func ==(lhs: Cell, rhs: Cell) -> Bool {
 return lhs.col == rhs.col && lhs.row == rhs.row
 }

}

// Now we can make Cell as key of dictonary
var dict = [Cell : String]()

dict[Cell(0, 0)] = "0, 0"
dict[Cell(1, 0)] = "1, 0"
dict[Cell(0, 1)] = "0, 1"

// Also we can create Set of Cells

https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Hashable_Protocol/index.html
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Equatable_Protocol/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 96

var set = Set<Cell>()

set.insert(Cell(0, 0))
set.insert(Cell(1, 0))

Note: It is not necessary that different values in custom type have different hash values, collisions are acceptable. If
hash values are equal, equality operator will be used to determine real equality.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 97

Chapter 18: Functions
Section 18.1: Basic Use
Functions can be declared without parameters or a return value. The only required information is a name (hello in
this case).

func hello()
{
 print("Hello World")
}

Call a function with no parameters by writing its name followed by an empty pair of parenthesis.

hello()
//output: "Hello World"

Section 18.2: Functions with Parameters
Functions can take parameters so that their functionality can be modified. Parameters are given as a comma
separated list with their types and names defined.

func magicNumber(number1: Int)
{
 print("\(number1) Is the magic number")
}

Note: The \(number1) syntax is basic String Interpolation and is used to insert the integer into the String.

Functions with parameters are called by specifying the function by name and supplying an input value of the type
used in the function declaration.

magicNumber(5)
//output: "5 Is the magic number
let example: Int = 10
magicNumber(example)
//output: "10 Is the magic number"

Any value of type Int could have been used.

func magicNumber(number1: Int, number2: Int)
{
 print("\(number1 + number2) Is the magic number")
}

When a function uses multiple parameters the name of the first parameter is not required for the first but is on
subsequent parameters.

let ten: Int = 10
let five: Int = 5
magicNumber(ten,number2: five)
//output: "15 Is the magic number"

Use external parameter names to make function calls more readable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 98

func magicNumber(one number1: Int, two number2: Int)
{
 print("\(number1 + number2) Is the magic number")
}

let ten: Int = 10
let five: Int = 5
magicNumber(one: ten, two: five)

Setting the default value in the function declaration allows you to call the function without giving any input values.

func magicNumber(one number1: Int = 5, two number2: Int = 10)
{
 print("\(number1 + number2) Is the magic number")
}

magicNumber()
//output: "15 Is the magic number"

Section 18.3: Subscripts
Classes, structures, and enumerations can define subscripts, which are shortcuts for accessing the member
elements of a collection, list, or sequence.

Example

struct DaysOfWeek {

 var days = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]

 subscript(index: Int) -> String {
 get {
 return days[index]
 }
 set {
 days[index] = newValue
 }
 }
}

Subscript Usage

var week = DaysOfWeek()
//you access an element of an array at index by array[index].
debugPrint(week[1])
debugPrint(week[0])
week[0] = "Sunday"
debugPrint(week[0])

Subscripts Options:

Subscripts can take any number of input parameters, and these input parameters can be of any type. Subscripts
can also return any type. Subscripts can use variable parameters and variadic parameters, but cannot use in-out
parameters or provide default parameter values.

Example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 99

struct Food {

 enum MealTime {
 case Breakfast, Lunch, Dinner
 }

 var meals: [MealTime: String] = [:]

 subscript (type: MealTime) -> String? {
 get {
 return meals[type]
 }
 set {
 meals[type] = newValue
 }
 }
}

Usage

var diet = Food()
diet[.Breakfast] = "Scrambled Eggs"
diet[.Lunch] = "Rice"

debugPrint("I had \(diet[.Breakfast]) for breakfast")

Section 18.4: Methods
Instance methods are functions that belong to instances of a type in Swift (a class, struct, enumeration, or
protocol). Type methods are called on a type itself.

Instance Methods

Instance methods are defined with a func declaration inside the definition of the type, or in an extension.

class Counter {
 var count = 0
 func increment() {
 count += 1
 }
}

The increment() instance method is called on an instance of the Counter class:

let counter = Counter() // create an instance of Counter class
counter.increment() // call the instance method on this instance

Type Methods

Type methods are defined with the static func keywords. (For classes, class func defines a type method that can
be overridden by subclasses.)

class SomeClass {
 class func someTypeMethod() {
 // type method implementation goes here
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 100

SomeClass.someTypeMethod() // type method is called on the SomeClass type itself

Section 18.5: Variadic Parameters
Sometimes, it's not possible to list the number of parameters a function could need. Consider a sum function:

func sum(_ a: Int, _ b: Int) -> Int {
 return a + b
}

This works fine for finding the sum of two numbers, but for finding the sum of three we'd have to write another
function:

func sum(_ a: Int, _ b: Int, _ c: Int) -> Int {
 return a + b + c
}

and one with four parameters would need another one, and so on. Swift makes it possible to define a function with
a variable number of parameters using a sequence of three periods: For example,

func sum(_ numbers: Int...) -> Int {
 return numbers.reduce(0, combine: +)
}

Notice how the numbers parameter, which is variadic, is coalesced into a single Array of type [Int]. This is true in
general, variadic parameters of type T... are accessible as a [T].

This function can now be called like so:

let a = sum(1, 2) // a == 3
let b = sum(3, 4, 5, 6, 7) // b == 25

A variadic parameter in Swift doesn't have to come at the end of the parameter list, but there can only be one in
each function signature.

Sometimes, it's convenient to put a minimum size on the number of parameters. For example, it doesn't really
make sense to take the sum of no values. An easy way to enforce this is by putting some non-variadic required
parameters and then adding the variadic parameter after. To make sure that sum can only be called with at least
two parameters, we can write

func sum(_ n1: Int, _ n2: Int, _ numbers: Int...) -> Int {
 return numbers.reduce(n1 + n2, combine: +)
}

sum(1, 2) // ok
sum(3, 4, 5, 6, 7) // ok
sum(1) // not ok
sum() // not ok

Section 18.6: Operators are Functions
Operators such as +, -, ?? are a kind of function named using symbols rather than letters. They are invoked
differently from functions:

Prefix: >x

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 101

Infix: x > y
Postfix: xb>

You can read more about basic operators and advanced operators in The Swift Programming Language.

Section 18.7: Passing and returning functions
The following function is returning another function as its result which can be later assigned to a variable and
called:

func jediTrainer () -> ((String, Int) -> String) {
 func train(name: String, times: Int) -> (String) {
 return "\(name) has been trained in the Force \(times) times"
 }
 return train
}

let train = jediTrainer()
train("Obi Wan", 3)

Section 18.8: Function types
Every function has its own function type, made up of the parameter types and the return type of the function itself.
For example the following function:

func sum(x: Int, y: Int) -> (result: Int) { return x + y }

has a function type of:

(Int, Int) -> (Int)

Function types can thus be used as parameters types or as return types for nesting functions.

Section 18.9: Inout Parameters
Functions can modify the parameters passed to them if they are marked with the inout keyword. When passing an
inout parameter to a function, the caller must add a & to the variable being passed.

func updateFruit(fruit: inout Int) {
 fruit -= 1
}

var apples = 30 // Prints "There's 30 apples"
print("There's \(apples) apples")

updateFruit(fruit: &apples)

print("There's now \(apples) apples") // Prints "There's 29 apples".

This allows reference semantics to be applied to types which would normally have value semantics.

Section 18.10: Throwing Errors
If you want a function to be able to throw errors, you need to add the throws keyword after the parentheses that
hold the arguments:

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/BasicOperators.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/BasicOperators.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 102

func errorThrower()throws -> String {}

When you want to throw an error, use the throw keyword:

func errorThrower()throws -> String {
 if true {
 return "True"
 } else {
 // Throwing an error
 throw Error.error
 }
}

If you want to call a function that can throw an error, you need to use the try keyword in a do block:

do {
 try errorThrower()
}

For more on Swift errors: Errors

Section 18.11: Returning Values
Functions can return values by specifying the type after the list of parameters.

func findHypotenuse(a: Double, b: Double) -> Double
{
 return sqrt((a * a) + (b * b))
}

let c = findHypotenuse(3, b: 5)
//c = 5.830951894845301

Functions can also return multiple values using tuples.

func maths(number: Int) -> (times2: Int, times3: Int)
{
 let two = number * 2
 let three = number * 3
 return (two, three)
}
let resultTuple = maths(5)
//resultTuple = (10, 15)

Section 18.12: Trailing Closure Syntax
When the last parameter of a function is a closure

func loadData(id: String, completion:(result: String) -> ()) {
 // ...
 completion(result:"This is the result data")
}

the function can be invoked using the Trailing Closure Syntax

loadData("123") { result in
 print(result)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 103

}

Section 18.13: Functions With Closures
Using functions that take in and execute closures can be extremely useful for sending a block of code to be
executed elsewhere. We can start by allowing our function to take in an optional closure that will (in this case)
return Void.

func closedFunc(block: (()->Void)? = nil) {
 print("Just beginning")

 if let block = block {
 block()
 }
}

Now that our function has been defined, let's call it and pass in some code:

closedFunc() { Void in
 print("Over already")
}

By using a trailing closure with our function call, we can pass in code (in this case, print) to be executed at some
point within our closedFunc() function.

The log should print:

Just beginning

Over already

A more specific use case of this could include the execution of code between two classes:

class ViewController: UIViewController {

 override func viewDidLoad() {
 let _ = A.init(){Void in self.action(2)}
 }

 func action(i: Int) {
 print(i)
 }
}

class A: NSObject {
 var closure : ()?

 init(closure: (()->Void)? = nil) {
 // Notice how this is executed before the closure
 print("1")
 // Make sure closure isn't nil
 self.closure = closure?()
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 104

The log should print:

1

2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 105

Chapter 19: Extensions
Section 19.1: What are Extensions?
Extensions are used to extend the functionality of existing types in Swift. Extensions can add subscripts, functions,
initializers, and computed properties. They can also make types conform to protocols.

Suppose you want to be able to compute the factorial of an Int. You can add a computed property in an extension:

extension Int {
 var factorial: Int {
 return (1..<self+1).reduce(1, combine: *)
 }
}

Then you can access the property just as if it had been included in original Int API.

let val1: Int = 10

val1.factorial // returns 3628800

Section 19.2: Variables and functions
Extensions can contain functions and computed/constant get variables. They are in the format

extension ExtensionOf {
 //new functions and get-variables
}

To reference the instance of the extended object, self can be used, just as it could be used

To create an extension of String that adds a .length() function which returns the length of the string, for example

extension String {
 func length() -> Int {
 return self.characters.count
 }
}

"Hello, World!".length() // 13

Extensions can also contain get variables. For example, adding a .length variable to the string which returns the
length of the string

extension String {
 var length: Int {
 get {
 return self.characters.count
 }
 }
}

"Hello, World!".length // 13

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Extensions.html
https://en.wikipedia.org/wiki/Factorial
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 106

Section 19.3: Initializers in Extensions
Extensions can contain convenience initializers. For example, a failable initializer for Int that accepts a NSString:

extension Int {
 init?(_ string: NSString) {
 self.init(string as String) // delegate to the existing Int.init(String) initializer
 }
}

let str1: NSString = "42"
Int(str1) // 42

let str2: NSString = "abc"
Int(str2) // nil

Section 19.4: Subscripts
Extensions can add new subscripts to an existing type.

This example gets the character inside a String using the given index:

Version = 2.2

extension String {
 subscript(index: Int) -> Character {
 let newIndex = startIndex.advancedBy(index)
 return self[newIndex]
 }
}

var myString = "StackOverFlow"
print(myString[2]) // a
print(myString[3]) // c
Version = 3.0

extension String {
 subscript(offset: Int) -> Character {
 let newIndex = self.index(self.startIndex, offsetBy: offset)
 return self[newIndex]
 }
}

var myString = "StackOverFlow"
print(myString[2]) // a
print(myString[3]) // c

Section 19.5: Protocol extensions
A very useful feature of Swift 2.2 is having the ability of extending protocols.

It works pretty much like abstract classes when regarding a functionality you want to be available in all the classes
that implements some protocol (without having to inherit from a base common class).

protocol FooProtocol {
 func doSomething()
}

extension FooProtocol {
 func doSomething() {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 107

 print("Hi")
 }
}

class Foo: FooProtocol {
 func myMethod() {
 doSomething() // By just implementing the protocol this method is available
 }
}

This is also possible using generics.

Section 19.6: Restrictions
It is possible to write a method on a generic type that is more restrictive using where sentence.

extension Array where Element: StringLiteralConvertible {
 func toUpperCase() -> [String] {
 var result = [String]()
 for value in self {
 result.append(String(value).uppercaseString)
 }
 return result
 }
}

Example of use

let array = ["a","b","c"]
let resultado = array.toUpperCase()

Section 19.7: What are extensions and when to use them
Extensions add new functionality to an existing class, structure, enumeration, or protocol type. This includes the
ability to extend types for which you do not have access to the original source code.

Extensions in Swift can:

Add computed properties and computed type properties
Define instance methods and type methods
Provide new initializers
Define subscripts
Define and use new nested types
Make an existing type conform to a protocol

When to use Swift Extensions:

Additional functionality to Swift
Additional functionality to UIKit / Foundation
Additional functionality without messing with other persons code
Breakdown classes into: Data / Functionality / Delegate

When not to use:

Extend your own classes from another file

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 108

Simple example:

extension Bool {
 public mutating func toggle() -> Bool {
 self = !self
 return self
 }
}

var myBool: Bool = true
print(myBool.toggle()) // false

Source

https://github.com/goktugyil/EZSwiftExtensions/blob/master/Sources/BoolExtensions.swift
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 109

Chapter 20: Classes
Section 20.1: Defining a Class
You define a class like this:

class Dog {}

A class can also be a subclass of another class:

class Animal {}
class Dog: Animal {}

In this example, Animal could also be a protocol that Dog conforms to.

Section 20.2: Properties and Methods
Classes can define properties that instances of the class can use. In this example, Dog has two properties: name and
dogYearAge:

class Dog {
 var name = ""
 var dogYearAge = 0
}

You can access the properties with dot syntax:

let dog = Dog()
print(dog.name)
print(dog.dogYearAge)

Classes can also define methods that can be called on the instances, they are declared similar to normal functions,
just inside the class:

class Dog {
 func bark() {
 print("Ruff!")
 }
}

Calling methods also uses dot syntax:

dog.bark()

Section 20.3: Reference Semantics
Classes are reference types, meaning that multiple variables can refer to the same instance.

class Dog {
 var name = ""
}

let firstDog = Dog()
firstDog.name = "Fido"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 110

let otherDog = firstDog // otherDog points to

same Dog instance otherDog.name = "Rover" // modifying otherDog also modifies firstDog print(firstDog.name) //
prints "Rover"

Because classes are reference types, even if the class is a constant, its variable properties can still be modified.

class Dog {
 var name: String // name is a variable property.
 let age: Int // age is a constant property.
 init(name: String, age: Int) {
 self.name = name
 self.age = age
 }
}

let constantDog = Dog(name: "Rover", age: 5)// This instance is a constant.
var variableDog = Dog(name: "Spot", age 7)// This instance is a variable.

constantDog.name = "Fido" // Not an error because name is a variable property.
constantDog.age = 6 // Error because age is a constant property.
constantDog = Dog(name: "Fido", age: 6)
/* The last one is an error because you are changing the actual reference, not
just what the reference points to. */

variableDog.name = "Ace" // Not an error because name is a variable property.
variableDog.age = 8 // Error because age is a constant property.
variableDog = Dog(name: "Ace", age: 8)
/* The last one is not an error because variableDog is a variable instance and
therefore the actual reference can be changed. */

Test whether two objects are identical (point to the exact same instance) using ===:

class Dog: Equatable {
 let name: String
 init(name: String) { self.name = name }
}

// Consider two dogs equal if their names are equal.
func ==(lhs: Dog, rhs: Dog) -> Bool {
 return lhs.name == rhs.name
}

// Create two Dog instances which have the same name.
let spot1 = Dog(name: "Spot")
let spot2 = Dog(name: "Spot")

spot1 == spot2 // true, because the dogs are equal
spot1 != spot2 // false

spot1 === spot2 // false, because the dogs are different instances
spot1 !== spot2 // true

Section 20.4: Classes and Multiple Inheritance
Swift does not support multiple inheritance. That is, you cannot inherit from more than one class.

class Animal { ... }
class Pet { ... }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 111

class Dog: Animal, Pet { ... } // This will result in a compiler error.

Instead you are encouraged to use composition when creating your types. This can be accomplished by using
protocols.

Section 20.5: deinit
class ClassA {

 var timer: NSTimer!

 init() {
 // initialize timer
 }

 deinit {
 // code
 timer.invalidate()
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 112

Chapter 21: Type Casting
Section 21.1: Downcasting
A variable can be downcasted to a subtype using the type cast operators as?, and as!.

The as? operator attempts to cast to a subtype.
It can fail, therefore it returns an optional.

let value: Any = "John"

let name = value as? String
print(name) // prints Optional("John")

let age = value as? Double
print(age) // prints nil

The as! operator forces a cast.
It does not return an optional, but crashes if the cast fails.

let value: Any = "Paul"

let name = value as! String
print(name) // prints "Paul"

let age = value as! Double // crash: "Could not cast value…"

It is common to use type cast operators with conditional unwrapping:

let value: Any = "George"

if let name = value as? String {
 print(name) // prints "George"
}

if let age = value as? Double {
 print(age) // Not executed
}

Section 21.2: Type casting in Swift Language

Type Casting

Type casting is a way to check the type of an instance, or to treat that instance as a different superclass or subclass
from somewhere else in its own class hierarchy.

Type casting in Swift is implemented with the is and as operators. These two operators provide a simple and
expressive way to check the type of a value or cast a value to a different type.

Downcasting

A constant or variable of a certain class type may actually refer to an instance of a subclass behind the scenes.
Where you believe this is the case, you can try to downcast to the subclass type with a type cast operator (as? or

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 113

as!).

Because downcasting can fail, the type cast operator comes in two different forms. The conditional form, as?,
returns an optional value of the type you are trying to downcast to. The forced form, as!, attempts the downcast
and force-unwraps the result as a single compound action.

Use the conditional form of the type cast operator (as?) when you are not sure if the downcast will succeed. This
form of the operator will always return an optional value, and the value will be nil if the downcast was not possible.
This enables you to check for a successful downcast.

Use the forced form of the type cast operator (as!) only when you are sure that the downcast will always succeed.
This form of the operator will trigger a runtime error if you try to downcast to an incorrect class type. Know more.

String to Int & Float conversion : -
 let numbers = "888.00"
 let intValue = NSString(string: numbers).integerValue
 print(intValue) // Output - 888

 let numbers = "888.00"
 let floatValue = NSString(string: numbers).floatValue
 print(floatValue) // Output : 888.0

Float to String Conversion
 let numbers = 888.00
 let floatValue = String(numbers)
 print(floatValue) // Output : 888.0

 // Get Float value at particular decimal point
 let numbers = 888.00
 let floatValue = String(format: "%.2f", numbers) // Here %.2f will give 2 numbers after decimal
points we can use as per our need
 print(floatValue) // Output : "888.00"

Integer to String value
 let numbers = 888
 let intValue = String(numbers)
 print(intValue) // Output : "888"

Float to String value
 let numbers = 888.00
 let floatValue = String(numbers)
 print(floatValue)

Optional Float value to String
 let numbers: Any = 888.00
 let floatValue = String(describing: numbers)
 print(floatValue) // Output : 888.0

Optional String to Int value
 let hitCount = "100"
 let data :AnyObject = hitCount
 let score = Int(data as? String ?? "") ?? 0
 print(score)

Downcasting values from JSON

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 114

 let json = ["name" : "john", "subjects": ["Maths", "Science", "English", "C Language"]] as
[String : Any]
 let name = json["name"] as? String ?? ""
 print(name) // Output : john
 let subjects = json["subjects"] as? [String] ?? []
 print(subjects) // Output : ["Maths", "Science", "English", "C Language"]

Downcasting values from Optional JSON
 let response: Any = ["name" : "john", "subjects": ["Maths", "Science", "English", "C
Language"]]
 let json = response as? [String: Any] ?? [:]
 let name = json["name"] as? String ?? ""
 print(name) // Output : john
 let subjects = json["subjects"] as? [String] ?? []
 print(subjects) // Output : ["Maths", "Science", "English", "C Language"]

Manage JSON Response with conditions
 let response: Any = ["name" : "john", "subjects": ["Maths", "Science", "English", "C
Language"]] //Optional Response

 guard let json = response as? [String: Any] else {
 // Handle here nil value
 print("Empty Dictionary")
 // Do something here
 return
 }
 let name = json["name"] as? String ?? ""
 print(name) // Output : john
 let subjects = json["subjects"] as? [String] ?? []
 print(subjects) // Output : ["Maths", "Science", "English", "C Language"]

Manage Nil Response with condition
 let response: Any? = nil
 guard let json = response as? [String: Any] else {
 // Handle here nil value
 print("Empty Dictionary")
 // Do something here
 return
 }
 let name = json["name"] as? String ?? ""
 print(name)
 let subjects = json["subjects"] as? [String] ?? []
 print(subjects)

Output : Empty Dictionary

Section 21.3: Upcasting
The as operator will cast to a supertype. As it cannot fail, it does not return an optional.

let name = "Ringo"
let value = string as Any // `value` is of type `Any` now

Section 21.4: Example of using a downcast on a function

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 115

parameter involving subclassing
A downcast can be used to make use of a subclass's code and data inside of a function taking a parameter of its
superclass.

class Rat {
 var color = "white"
}

class PetRat: Rat {
 var name = "Spot"
}

func nameOfRat(�: Rat) -> String {
 guard let petRat = (� as? PetRat) else {
 return "No name"
 }

 return petRat.name
}

let noName = Rat()
let spot = PetRat()

print(nameOfRat(noName))
print(nameOfRat(spot))

Section 21.5: Casting with switch
The switch statement can also be used to attempt casting into different types:

func checkType(_ value: Any) -> String {
 switch value {

 // The `is` operator can be used to check a type
 case is Double:
 return "value is a Double"

 // The `as` operator will cast. You do not need to use `as?` in a `switch`.
 case let string as String:
 return "value is the string: \(string)"

 default:
 return "value is something else"
 }

}

checkType("Cadena") // "value is the string: Cadena"
checkType(6.28) // "value is a Double"
checkType(UILabel()) // "value is something else"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 116

Chapter 22: Generics
Section 22.1: The Basics of Generics
Generics are placeholders for types, allowing you to write flexible code that can be applied across multiple types.
The advantage of using generics over Any is that they still allow the compiler to enforce strong type-safety.

A generic placeholder is defined within angle brackets <>.

Generic Functions

For functions, this placeholder is placed after the function name:

/// Picks one of the inputs at random, and returns it
func pickRandom

;T>(_ a:T, _ b:T) -> T { return arc4random_uniform(2) == 0 ? a : b }

In this case, the generic placeholder is T. When you come to call the function, Swift can infer the type of T for you (as
it simply acts as a placeholder for an actual type).

let randomOutput = pickRandom(5, 7) // returns an Int (that's either 5 or 7)

Here we’re passing two integers to the function. Therefore Swift is inferring T == Int – thus the function signature
is inferred to be (Int, Int) -> Int.

Because of the strong type safety that generics offer – both the arguments and return of the function must be the
same type. Therefore the following will not compile:

struct Foo {}

let foo = Foo()

let randomOutput = pickRandom(foo, 5) // error: cannot convert value of type 'Int' to expected
argument type 'Foo'

Generic Types

In order to use generics with classes, structs or enums, you can define the generic placeholder after the type name.

class Bar;T> { var baz : T init(baz:T) { self.baz = baz } }

This generic placeholder will require a type when you come to use the class Bar. In this case, it can be inferred from
the initialiser init(baz:T).

let bar = Bar(baz: "a string") // bar's type is Bar<String>

Here the generic placeholder T is inferred to be of type String, thus creating a Bar<String> instance. You can also
specify the type explicitly:

let bar = Bar;String>(baz: "a string")

When used with a type, the given generic placeholder will keep its type for the entire lifetime of the given instance,
and cannot be changed after initialisation. Therefore when you access the property baz, it will always be of type
String for this given instance.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Generics.html#//apple_ref/doc/uid/TP40014097-CH26-ID179
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TypeCasting.html#//apple_ref/doc/uid/TP40014097-CH22-ID342
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 117

let str = bar.baz // of type String

Passing Around Generic Types

When you come to pass around generic types, in most cases you have to be explicit about the generic placeholder
type you expect. For example, as a function input:

func takeABarInt(bar:Bar;Int>) { ... }

This function will only accept a Bar<Int>. Attempting to pass in a Bar instance where the generic placeholder type is
not Int will result in a compiler error.

Generic Placeholder Naming

Generic placeholder names are not just limited to single letters. If a given placeholder represents a meaningful
concept, you should give it a descriptive name. For example, Swift’s Array has a generic placeholder called Element,
which defines the element type of a given Array instance.

public struct Array;Element> : RandomAccessCollection, MutableCollection { ... }

Section 22.2: Constraining Generic Placeholder Types
It is possible to force the type parameters of a generic class to implement a protocol, for example, Equatable

class MyGenericClass<Type: Equatable>{

 var value: Type
 init(value: Type){
 self.value = value
 }

 func getValue() -> Type{
 return self.value
 }

 func valueEquals(anotherValue: Type) -> Bool{
 return self.value == anotherValue
 }
}

Whenever we create a new MyGenericClass, the type parameter has to implement the Equatable protocol
(ensuring the type parameter can be compared to another variable of the same type using ==)

let myFloatGeneric = MyGenericClass<Double>(value: 2.71828) // valid
let myStringGeneric = MyGenericClass<String>(value: "My String") // valid

// "Type [Int] does not conform to protocol 'Equatable'"
let myInvalidGeneric = MyGenericClass<[Int]>(value: [2])

let myIntGeneric = MyGenericClass<Int>(value: 72)
print(myIntGeneric.valueEquals(72)) // true
print(myIntGeneric.valueEquals(-274)) // false

// "Cannot convert value of type 'String' to expected argument type 'Int'"
print(myIntGeneric.valueEquals("My String"))

https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_Array_Structure/index.html
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Equatable_Protocol/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 118

Section 22.3: Generic Class Examples
A generic class with the type parameter Type

class MyGenericClass<Type>{

 var value: Type
 init(value: Type){
 self.value = value
 }

 func getValue() -> Type{
 return self.value
 }

 func setValue(value: Type){
 self.value = value
 }
}

We can now create new objects using a type parameter

let myStringGeneric = MyGenericClass<String>(value: "My String Value")
let myIntGeneric = MyGenericClass<Int>(value: 42)

print(myStringGeneric.getValue()) // "My String Value"
print(myIntGeneric.getValue()) // 42

myStringGeneric.setValue("Another String")
myIntGeneric.setValue(1024)

print(myStringGeneric.getValue()) // "Another String"
print(myIntGeneric.getValue()) // 1024

Generics can also be created with multiple type parameters

class AnotherGenericClass<TypeOne, TypeTwo, TypeThree>{

 var value1: TypeOne
 var value2: TypeTwo
 var value3: TypeThree
 init(value1: TypeOne, value2: TypeTwo, value3: TypeThree){
 self.value1 = value1
 self.value2 = value2
 self.value3 = value3
 }

 func getValueOne() -> TypeOne{return self.value1}
 func getValueTwo() -> TypeTwo{return self.value2}
 func getValueThree() -> TypeThree{return self.value3}
}

And used in the same way

let myGeneric = AnotherGenericClass<String, Int, Double>(value1: "Value of pi", value2: 3, value3:
3.14159)

print(myGeneric.getValueOne() is String) // true
print(myGeneric.getValueTwo() is Int) // true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 119

print(myGeneric.getValueThree() is Double) // true
print(myGeneric.getValueTwo() is String) // false

print(myGeneric.getValueOne()) // "Value of pi"
print(myGeneric.getValueTwo()) // 3
print(myGeneric.getValueThree()) // 3.14159

Section 22.4: Using Generics to Simplify Array Functions
A function that extends the functionality of the array by creating an object oriented remove function.

// Need to restrict the extension to elements that can be compared.
// The `Element` is the generics name defined by Array for its item types.
// This restriction also gives us access to `index(of:_)` which is also
// defined in an Array extension with `where Element: Equatable`.
public extension Array where Element: Equatable {
 /// Removes the given object from the array.
 mutating func remove(_ element: Element) {
 if let index = self.index(of: element) {
 self.remove(at: index)
 } else {
 fatalError("Removal error, no such element:\"\(element)\" in array.\n")
 }
 }
}

Usage

var myArray = [1,2,3]
print(myArray)

// Prints [1,2,3]

Use the function to remove an element without need for an index. Just pass the object to remove.

myArray.remove(2)
print(myArray)

// Prints [1,3]

Section 22.5: Advanced Type Constraints
It's possible to specify several type constraints for generics using the where clause:

func doSomething<T where T: Comparable, T: Hashable>(first: T, second: T) {
 // Access hashable function
 guard first.hashValue == second.hashValue else {
 return
 }
 // Access comparable function
 if first == second {
 print("\(first) and \(second) are equal.")
 }
}

It's also valid to write the where clause after the argument list:

func doSomething<T>(first: T, second: T) where T: Comparable, T: Hashable {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 120

 // Access hashable function
 guard first.hashValue == second.hashValue else {
 return
 }
 // Access comparable function
 if first == second {
 print("\(first) and \(second) are equal.")
 }
}

Extensions can be restricted to types that satisfy conditions. The function is only available to instances which satisfy
the type conditions:

// "Element" is the generics type defined by "Array". For this example, we
// want to add a function that requires that "Element" can be compared, that
// is: it needs to adhere to the Equatable protocol.
public extension Array where Element: Equatable {
 /// Removes the given object from the array.
 mutating func remove(_ element: Element) {
 // We could also use "self.index(of: element)" here, as "index(of:_)"
 // is also defined in an extension with "where Element: Equatable".
 // For the sake of this example, explicitly make use of the Equatable.
 if let index = self.index(where: { $0 == element }) {
 self.remove(at: index)
 } else {
 fatalError("Removal error, no such element:\"\(element)\" in array.\n")
 }
 }
}

Section 22.6: Generic Class Inheritance
Generic classes can be inherited:

// Models
class MyFirstModel {
}

class MySecondModel: MyFirstModel {
}

// Generic classes
class MyFirstGenericClass<T: MyFirstModel> {

 func doSomethingWithModel(model: T) {
 // Do something here
 }

}

class MySecondGenericClass<T: MySecondModel>: MyFirstGenericClass<T> {

 override func doSomethingWithModel(model: T) {
 super.doSomethingWithModel(model)

 // Do more things here
 }

}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 121

Section 22.7: Use generics to enhance type-safety
Let's take this example without using generics

protocol JSONDecodable {
 static func from(_ json: [String: Any]) -> Any?
}

The protocol declaration seems fine unless you actually use it.

let myTestObject = TestObject.from(myJson) as? TestObject

Why do you have to cast the result to TestObject? Because of the Any return type in the protocol declaration.

By using generics you can avoid this problem that can cause runtime errors (and we don't want to have them!)

protocol JSONDecodable {
 associatedtype Element
 static func from(_ json: [String: Any]) -> Element?
}

struct TestObject: JSONDecodable {
 static func from(_ json: [String: Any]) -> TestObject? {
 }
}

let testObject = TestObject.from(myJson) // testObject is now automatically `TestObject?`

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 122

Chapter 23: OptionSet
Section 23.1: OptionSet Protocol
OptionSetType is a protocol designed to represent bit mask types where individual bits represent members of the
set. A set of logical and/or functions enforce the proper syntax:

struct Features : OptionSet {
 let rawValue : Int
 static let none = Features(rawValue: 0)
 static let feature0 = Features(rawValue: 1 << 0)
 static let feature1 = Features(rawValue: 1 << 1)
 static let feature2 = Features(rawValue: 1 << 2)
 static let feature3 = Features(rawValue: 1 << 3)
 static let feature4 = Features(rawValue: 1 << 4)
 static let feature5 = Features(rawValue: 1 << 5)
 static let all: Features = [feature0, feature1, feature2, feature3, feature4, feature5]
}

Features.feature1.rawValue //2
Features.all.rawValue //63

var options: Features = [.feature1, .feature2, .feature3]

options.contains(.feature1) //true
options.contains(.feature4) //false

options.insert(.feature4)
options.contains(.feature4) //true

var otherOptions : Features = [.feature1, .feature5]

options.contains(.feature5) //false

options.formUnion(otherOptions)
options.contains(.feature5) //true

options.remove(.feature5)
options.contains(.feature5) //false

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 123

Chapter 24: Reading & Writing JSON
Section 24.1: JSON Serialization, Encoding, and Decoding with
Apple Foundation and the Swift Standard Library
The JSONSerialization class is built into Apple's Foundation framework.

Version = 2.2

Read JSON

The JSONObjectWithData function takes NSData, and returns AnyObject. You can use as? to convert the result to
your expected type.

do {
 guard let jsonData = "[\"Hello\", \"JSON\"]".dataUsingEncoding(NSUTF8StringEncoding) else {
 fatalError("couldn't encode string as UTF-8")
 }

 // Convert JSON from NSData to AnyObject
 let jsonObject = try NSJSONSerialization.JSONObjectWithData(jsonData, options: [])

 // Try to convert AnyObject to array of strings
 if let stringArray = jsonObject as? [String] {
 print("Got array of strings: \(stringArray.joinWithSeparator(", "))")
 }
} catch {
 print("error reading JSON: \(error)")
}

You can pass options: .AllowFragments instead of options: [] to allow reading JSON when the top-level object
isn't an array or dictionary.

Write JSON

Calling dataWithJSONObject converts a JSON-compatible object (nested arrays or dictionaries with strings,
numbers, and NSNull) to raw NSData encoded as UTF-8.

do {
 // Convert object to JSON as NSData
 let jsonData = try NSJSONSerialization.dataWithJSONObject(jsonObject, options: [])
 print("JSON data: \(jsonData)")

 // Convert NSData to String
 let jsonString = String(data: jsonData, encoding: NSUTF8StringEncoding)!
 print("JSON string: \(jsonString)")
} catch {
 print("error writing JSON: \(error)")
}

You can pass options: .PrettyPrinted instead of options: [] for pretty-printing.

Version = 3.0

Same behavior in Swift 3 but with a different syntax.

do {
 guard let jsonData = "[\"Hello\", \"JSON\"]".data(using: String.Encoding.utf8) else {

https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 124

 fatalError("couldn't encode string as UTF-8")
 }

 // Convert JSON from NSData to AnyObject
 let jsonObject = try JSONSerialization.jsonObject(with: jsonData, options: [])

 // Try to convert AnyObject to array of strings
 if let stringArray = jsonObject as? [String] {
 print("Got array of strings: \(stringArray.joined(separator: ", "))")
 }
} catch {
 print("error reading JSON: \(error)")
}

do {
 // Convert object to JSON as NSData
 let jsonData = try JSONSerialization.data(withJSONObject: jsonObject, options: [])
 print("JSON data: \(jsonData)")

 // Convert NSData to String
 let jsonString = String(data: jsonData, encoding: .utf8)!
 print("JSON string: \(jsonString)")
} catch {
 print("error writing JSON: \(error)")
}

Note: The Following is currently available only in Swift 4.0 and later.

As of Swift 4.0, the Swift standard library includes the protocols Encodable and Decodable to define a standardized
approach to data encoding and decoding. Adopting these protocols will allow implementations of the Encoder and
Decoder protocols take your data and encode or decode it to and from an external representation such as JSON.
Conformance to the Codable protocol combines both the Encodable and Decodable protocols. This is now the
recommended means to handle JSON in your program.

Encode and Decode Automatically

The easiest way to make a type codable is to declare its properties as types that are already Codable. These types
include standard library types such as String, Int, and Double; and Foundation types such as Date, Data, and URL. If
a type's properties are codable, the type itself will automatically conform to Codable by simply declaring the
conformance.

Consider the following example, in which the Book structure conforms to Codable.

struct Book: Codable {
 let title: String
 let authors: [String]
 let publicationDate: Date
}

Note that standard collections such as Array and Dictionary conform to Codable if they contain codable
types.

By adopting Codable, the Book structure can now be encoded to and decoded from JSON using the Apple
Foundation classes JSONEncoder and JSONDecoder, even though Book itself contains no code to specifically handle

https://developer.apple.com/documentation/swift/encodable
https://developer.apple.com/documentation/swift/decodable
https://developer.apple.com/documentation/swift/encoder
https://developer.apple.com/documentation/swift/decoder
https://developer.apple.com/documentation/swift/codable
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 125

JSON. Custom encoders and decoders can be written, as well, by conforming to the Encoder and Decoder protocols,
respectively.

Encode to JSON data
// Create an instance of Book called book
let encoder = JSONEncoder()
let data = try! encoder.encode(book) // Do not use try! in production code
print(data)

Set encoder.outputFormatting = .prettyPrinted for easier reading. ## Decode from JSON data

Decode from JSON data
// Retrieve JSON string from some source
let jsonData = jsonString.data(encoding: .utf8)!
let decoder = JSONDecoder()
let book = try! decoder.decode(Book.self, for: jsonData) // Do not use try! in production code
print(book)

In the above example, Book.self informs the decoder of the type to which the JSON should be decoded.

Encoding or Decoding Exclusively

Sometimes you may not need data to be both encodable and decodable, such as when you need only read JSON
data from an API, or if your program only submits JSON data to an API.

If you intend only to write JSON data, conform your type to Encodable.

struct Book: Encodable {
 let title: String
 let authors: [String]
 let publicationDate: Date
}

If you intend only to read JSON data, conform your type to Decodable.

struct Book: Decodable {
 let title: String
 let authors: [String]
 let publicationDate: Date
}

Using Custom Key Names

APIs frequently use naming conventions other than the Swift-standard camel case, such as snake case. This can
become an issue when it comes to decoding JSON, since by default the JSON keys must align exactly with your
type's property names. To handle these scenarios you can create custom keys for your type using the CodingKey
protocol.

struct Book: Codable {
 // ...
 enum CodingKeys: String, CodingKey {
 case title
 case authors

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 126

 case publicationDate = "publication_date"
 }
}

CodingKeys are generated automatically for types which adopt the Codable protocol, but by creating our own
implementation in the example above we're allow our decoder to match the local camel case publicationDate with
the snake case publication_date as it's delivered by the API.

Section 24.2: SwiftyJSON
SwiftyJSON is a Swift framework built to remove the need for optional chaining in normal JSON serialization.

You can download it here: https://github.com/SwiftyJSON/SwiftyJSON

Without SwiftyJSON, your code would look like this to find the name of the first book in a JSON object:

if let jsonObject = try NSJSONSerialization.JSONObjectWithData(data, options: .AllowFragments) as?
[[String: AnyObject]],
let bookName = (jsonObject[0]["book"] as? [String: AnyObject])?["name"] as? String {
 //We can now use the book name
}

In SwiftyJSON, this is hugely simplified:

let json = JSON(data: data)
if let bookName = json[0]["book"]["name"].string {
 //We can now use the book name
}

It removes the need to check every field, as it will return nil if any of them are invalid.

To use SwiftyJSON, download the correct version from the Git repository - there is a branch for Swift 3. Simply drag
the "SwiftyJSON.swift" into your project and import into your class:

import SwiftyJSON

You can create your JSON object using the following two initializers:

let jsonObject = JSON(data: dataObject)

or

let jsonObject = JSON(jsonObject) //This could be a string in a JSON format for example

To access your data, use subscripts:

let firstObjectInAnArray = jsonObject[0]
let nameOfFirstObject = jsonObject[0]["name"]

You can then parse your value to a certain data type, which will return an optional value:

let nameOfFirstObject = jsonObject[0]["name"].string //This will return the name as a string

let nameOfFirstObject = jsonObject[0]["name"].double //This will return null

https://github.com/SwiftyJSON/SwiftyJSON
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 127

You can also compile your paths into a swift Array:

let convolutedPath = jsonObject[0]["name"][2]["lastName"]["firstLetter"].string

Is the same as:

let convolutedPath = jsonObject[0, "name", 2, "lastName", "firstLetter"].string

SwiftyJSON also has functionality to print its own errors:

if let name = json[1337].string {
 //You can use the value - it is valid
} else {
 print(json[1337].error) // "Array[1337] is out of bounds" - You cant use the value
}

If you need to write to your JSON object, you can use subscripts again:

var originalJSON:JSON = ["name": "Jack", "age": 18]
originalJSON["age"] = 25 //This changes the age to 25
originalJSON["surname"] = "Smith" //This creates a new field called "surname" and adds the value to
it

Should you need the original String for the JSON, for example if you need to write it to a file, you can get the raw
value out:

if let string = json.rawString() { //This is a String object
 //Write the string to a file if you like
}

if let data = json.rawData() { //This is an NSData object
 //Send the data to your server if you like
}

Section 24.3: Freddy
Freddy is a JSON parsing library maintained by Big Nerd Ranch. It has three principal benefits:

Type Safety: Helps you work with sending and receiving JSON in a way that prevents runtime crashes.1.

Idiomatic: Takes advantage of Swift's generics, enumerations, and functional features, without complicated2.
documentation or magical custom operators.

Error Handling: Provides informative error information for commonly occurring JSON errors.3.

Example JSON Data

Let's define some example JSON data for use with these examples.

{
 "success": true,
 "people": [
 {
 "name": "Matt Mathias",
 "age": 32,
 "spouse": true
 },

https://github.com/bignerdranch/Freddy
https://www.bignerdranch.com/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 128

 {
 "name": "Sergeant Pepper",
 "age": 25,
 "spouse": false
 }
],
 "jobs": [
 "teacher",
 "judge"
],
 "states": {
 "Georgia": [
 30301,
 30302,
 30303
],
 "Wisconsin": [
 53000,
 53001
]
 }
}

let jsonString = "{\"success\": true, \"people\": [{\"name\": \"Matt Mathias\",\"age\":
32,\"spouse\": true},{\"name\": \"Sergeant Pepper\",\"age\": 25,\"spouse\": false}],\"jobs\":
[\"teacher\",\"judge\"],\"states\": {\"Georgia\": [30301,30302,30303],\"Wisconsin\":
[53000,53001]}}"
let jsonData = jsonString.dataUsingEncoding(NSUTF8StringEncoding)!

Deserializing Raw Data

To deserialize the data, we initialize a JSON object then access a particular key.

do {
 let json = try JSON(data: jsonData)
 let success = try json.bool("success")
} catch {
 // do something with the error
}

We try here because accessing the json for the key "success" could fail--it might not exist, or the value might not
be a boolean.

We can also specify a path to access elements nested in the JSON structure. The path is a comma-separated list of
keys and indices that describe the path to a value of interest.

do {
 let json = try JSON(data: jsonData)
 let georgiaZipCodes = try json.array("states", "Georgia")
 let firstPersonName = try json.string("people", 0, "name")
} catch {
 // do something with the error
}

Deserializing Models Directly

JSON can be directly parsed to a model class that implements the JSONDecodable protocol.

public struct Person {
 public let name: String
 public let age: Int

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 129

 public let spouse: Bool
}

extension Person: JSONDecodable {
 public init(json: JSON) throws {
 name = try json.string("name")
 age = try json.int("age")
 spouse = try json.bool("spouse")
 }
}

do {
 let json = try JSON(data: jsonData)
 let people = try json.arrayOf("people", type: Person.self)
} catch {
 // do something with the error
}

Serializing Raw Data

Any JSON value can be serialized directly to NSData.

let success = JSON.Bool(false)
let data: NSData = try success.serialize()

Serializing Models Directly

Any model class that implements the JSONEncodable protocol can be serialized directly to NSData.

extension Person: JSONEncodable {
 public func toJSON() -> JSON {
 return .Dictionary([
 "name": .String(name),
 "age": .Int(age),
 "spouse": .Bool(spouse)
])
 }
}

let newPerson = Person(name: "Glenn", age: 23, spouse: true)
let data: NSData = try newPerson.toJSON().serialize()

Section 24.4: JSON Parsing Swift 3
Here is the JSON File we will be using called animals.json

{
 "Sea Animals": [
 {
 "name": "Fish",
 "question": "How many species of fish are there?" },
 {
 "name": "Sharks",
 "question": "How long do sharks live?"
 },
 {
 "name": "Squid",
 "question": "Do squids have brains?"
 },
 {
 "name": "Octopus",

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 130

 "question": "How big do octopus get?"
 },
 {
 "name": "Star Fish",
 "question": "How long do star fish live?"
 }
],
 "mammals": [
 {
 "name": "Dog",
 "question": "How long do dogs live?"
 },
 {
 "name": "Elephant",
 "question": "How much do baby elephants weigh?"
 },
 {
 "name": "Cats",
 "question": "Do cats really have 9 lives?"
 },
 {
 "name": "Tigers",
 "question": "Where do tigers live?"
 },
 {
 "name": "Pandas",
 "question": "WHat do pandas eat?"
 }] }

Import your JSON File in your project

You can perform this simple function to print out your JSON file

 func jsonParsingMethod() {
 //get the file
 let filePath = Bundle.main.path(forResource: "animals", ofType: "json")
 let content = try! String(contentsOfFile: filePath!)

 let data: Data = content.data(using: String.Encoding.utf8)!
 let json: NSDictionary = try! JSONSerialization.jsonObject(with: data as Data,
options:.mutableContainers) as! NSDictionary

//Call which part of the file you'd like to pare
 if let results = json["mammals"] as? [[String: AnyObject]] {

 for res in results {
 //this will print out the names of the mammals from out file.
 if let rates = res["name"] as? String {
 print(rates)
 }
 }
 }
 }

If you want to put it in a table view, I would create a dictionary first with an NSObject.

Create a new swift file called ParsingObject and create your string variables.

Make sure that the variable name is the same as the JSON File

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 131

. For example, in our project we have name and question so in our new swift file, we will use

var name: String?
var question: String?

Initialize the NSObject we made back into our ViewController.swift var array = ParsingObject Then we would
perform the same method we had before with a minor modification.

 func jsonParsingMethod() {
 //get the file
 let filePath = Bundle.main.path(forResource: "animals", ofType: "json")
 let content = try! String(contentsOfFile: filePath!)

 let data: Data = content.data(using: String.Encoding.utf8)!
 let json: NSDictionary = try! JSONSerialization.jsonObject(with: data as Data,
options:.mutableContainers) as! NSDictionary

//This time let's get Sea Animals
 let results = json["Sea Animals"] as? [[String: AnyObject]]

//Get all the stuff using a for-loop
 for i in 0 ..< results!.count {

//get the value
 let dict = results?[i]
 let resultsArray = ParsingObject()

//append the value to our NSObject file
 resultsArray.setValuesForKeys(dict!)
 array.append(resultsArray)

 }

 }

Then we show it in our tableview by doing this,

 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return array.count
 }

 func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)
//This is where our values are stored
 let object = array[indexPath.row]
 cell.textLabel?.text = object.name
 cell.detailTextLabel?.text = object.question
 return cell
 }

Section 24.5: Simple JSON parsing into custom objects
Even if third-party libraries are good, a simple way to parse the JSON is provided by protocols You can imagine you
have got an object Todo as

struct Todo {
 let comment: String

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 132

}

Whenever you receive the JSON, you can handle the plain NSData as shown in the other example using
NSJSONSerialization object.

After that, using a simple protocol JSONDecodable

typealias JSONDictionary = [String:AnyObject]
protocol JSONDecodable {
 associatedtype Element
 static func from(json json: JSONDictionary) -> Element?
}

And making your Todo struct conforming to JSONDecodable does the trick

extension Todo: JSONDecodable {
 static func from(json json: JSONDictionary) -> Todo? {
 guard let comment = json["comment"] as? String else { return nil }
 return Todo(comment: comment)
 }
}

You can try it with this json code:

{
 "todos": [
 {
 "comment" : "The todo comment"
 }
]
}

When you got it from the API, you can serialize it as the previous examples shown in an AnyObject instance. After
that, you can check if the instance is a JSONDictionary instance

guard let jsonDictionary = dictionary as? JSONDictionary else { return }

The other thing to check, specific for this case because you have an array of Todo in the JSON, is the todos
dictionary

guard let todosDictionary = jsonDictionary["todos"] as? [JSONDictionary] else { return }

Now that you got the array of dictionaries, you can convert each of them in a Todo object by using flatMap (it will
automatically delete the nil values from the array)

let todos: [Todo] = todosDictionary.flatMap { Todo.from(json: $0) }

Section 24.6: Arrow
Arrow is an elegant JSON parsing library in Swift.

It allows to parse JSON and map it to custom model classes with help of an

<--

operator:

https://github.com/s4cha/Arrow
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 133

identifier <-- json["id"]
name <-- json["name"]
stats <-- json["stats"]

Example:

Swift model

struct Profile {
 var identifier = 0
 var name = ""
 var link: NSURL?
 var weekday: WeekDay = .Monday
 var stats = Stats()
 var phoneNumbers = [PhoneNumber]()
}

JSON file

{
 "id": 15678,
 "name": "John Doe",
 "link": "https://apple.com/steve",
 "weekdayInt" : 3,
 "stats": {
 "numberOfFriends": 163,
 "numberOfFans": 10987
 },
 "phoneNumbers": [{
 "label": "house",
 "number": "9809876545"
 }, {
 "label": "cell",
 "number": "0908070656"
 }, {
 "label": "work",
 "number": "0916570656"
 }]
}

Mapping

extension Profile: ArrowParsable {
 mutating func deserialize(json: JSON) {
 identifier <-- json["id"]
 link <-- json["link"]
 name <-- json["name"]
 weekday <-- json["weekdayInt"]
 stats <- json["stats"]
 phoneNumbers <-- json["phoneNumbers"]
 }
}

Usage

let profile = Profile()
profile.deserialize(json)

Installation:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 134

Carthage

github "s4cha/Arrow"

CocoaPods

pod 'Arrow'
use_frameworks!

Manually

Simply Copy and Paste Arrow.swift in your Xcode Project

https://github.com/s4cha/Arrow

As A Framework

Download Arrow from the GitHub repository and build the Framework target on the example project. Then Link
against this framework.

https://github.com/s4cha/Arrow
https://github.com/s4cha/Arrow
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 135

Chapter 25: Advanced Operators
Section 25.1: Bitwise Operators
Swift Bitwise operators allow you to perform operations on the binary form of numbers. You can specify a binary
literal by prefixing the number with 0b, so for example 0b110 is equivalent to the binary number 110 (the decimal
number 6). Each 1 or 0 is a bit in the number.

Bitwise NOT ~:

var number: UInt8 = 0b01101100
let newNumber = ~number
// newNumber is equal to 0b01101100

Here, each bit get changed to its opposite. Declaring the number as explicitly UInt8 ensures that the number is
positive (so that we don't have to deal with negatives in the example) and that it is only 8 bits. If 0b01101100 was a
larger UInt, there would be leading 0s that would be converted to 1s and become significant upon inversion:

var number: UInt16 = 0b01101100
// number equals 0b0000000001101100
// the 0s are not significant
let newNumber = ~number
// newNumber equals 0b1111111110010011
// the 1s are now significant

0 -> 1
1 -> 0

Bitwise AND &:

var number = 0b0110
let newNumber = number & 0b1010
// newNumber is equal to 0b0010

Here, a given bit will be 1 if and only if the binary numbers on both sides of the & operator contained a 1 at that bit
location.

0 & 0 -> 0
0 & 1 -> 0
1 & 1 -> 1

Bitwise OR |:

var number = 0b0110
let newNumber = number | 0b1000
// newNumber is equal to 0b1110

Here, a given bit will be 1 if and only if the binary number on at least one side of the | operator contained a 1 at
that bit location.

0 | 0 -> 0
0 | 1 -> 1
1 | 1 -> 1

Bitwise XOR (Exclusive OR) ^:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 136

var number = 0b0110
let newNumber = number ^ 0b1010
// newNumber is equal to 0b1100

Here, a given bit will be 1 if and only if the bits in that position of the two operands are different.

0 ^ 0 -> 0
0 ^ 1 -> 1
1 ^ 1 -> 0

For all binary operations, the order of the operands makes no difference on the result.

Section 25.2: Custom Operators
Swift supports the creation of custom operators. New operators are declared at a global level using the operator
keyword.

The operator's structure is defined by three parts: operand placement, precedence, and associativity.

The prefix, infix and postfix modifiers are used to start an custom operator declaration. The prefix and1.
postfix modifiers declare whether the operator must be before or after, respectively, the value on which it
acts. Such operators are urnary, like 8 and 3++ **, since they can only act on one target. The infix declares a
binary operator, which acts on the two values it is between, such as 2+3.

Operators with higher precedence are calculated first. The default operator precedence is just higher than2.
?...: (a value of 100 in Swift 2.x). The precedence of standard Swift operators can be found here.

Associativity defines the order of operations between operators of the same precedence. Left associative3.
operators are calculated from left to right (reading order, like most operators), while right associative
operators calculate from right to left.

Version ≥ 3.0

Starting from Swift 3.0, one would define the precedence and associativity in a precedence group instead of the
operator itself, so that multiple operators can easily share the same precedence without referring to the cryptic
numbers. The list of standard precedence groups is shown below.

Operators return values based on the calculation code. This code acts as a normal function, with parameters
specifying the type of input and the return keyword specifying the calculated value that the operator returns.

Here is the definition of a simple exponential operator, since standard Swift does not have an exponential operator.

import Foundation

infix operator ** { associativity left precedence 170 }

func ** (num: Double, power: Double) -> Double{
 return pow(num, power)
}

The infix says that the ** operator works in between two values, such as 9**2. Because the function has left
associativity, 3**3**2 is calculated as (3**3)**2. The precedence of 170 is higher than all standard Swift operations,
meaning that 3+2**4 calculates to 19, despite the left associativity of **.

Version ≥ 3.0

https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 137

import Foundation

infix operator **: BitwiseShiftPrecedence

func ** (num: Double, power: Double) -> Double {
 return pow(num, power)
}

Instead of specifying the precedence and associativity explicitly, on Swift 3.0 we could use the built-in precedence
group BitwiseShiftPrecedence that gives the correct values (same as <<, >>).

**: The increment and decrement are deprecated and will be removed in Swift 3.

Section 25.3: Overflow Operators
Overflow refers to what happens when an operation would result in a number that is either larger or smaller than
the designated amount of bits for that number may hold.

Due to the way binary arithmetic works, after a number becomes too large for its bits, the number overflows down
to the smallest possible number (for the bit size) and then continues counting up from there. Similarly, when a
number becomes too small, it underflows up to the largest possible number (for its bit size) and continues counting
down from there.

Because this behavior is not often desired and can lead to serious security issues, the Swift arithmetic operators +,
-, and * will throw errors when an operation would cause an overflow or underflow. To explicitly allow overflow and
underflow, use &+, &-, and &* instead.

var almostTooLarge = Int.max
almostTooLarge + 1 // not allowed
almostTooLarge &+ 1 // allowed, but result will be the value of Int.min

Section 25.4: Commutative Operators
Let's add a custom operator to multiply a CGSize

func *(lhs: CGFloat, rhs: CGSize) -> CGSize{
 let height = lhs*rhs.height
 let width = lhs*rhs.width
 return CGSize(width: width, height: height)
}

Now this works

let sizeA = CGSize(height:100, width:200)
let sizeB = 1.1 * sizeA //=> (height: 110, width: 220)

But if we try to do the operation in reverse, we get an error

let sizeC = sizeB * 20 // ERROR

But it's simple enough to add:

func *(lhs: CGSize, rhs: CGFloat) -> CGSize{
 return rhs*lhs

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 138

}

Now the operator is commutative.

let sizeA = CGSize(height:100, width:200)
let sizeB = sizeA * 1.1 //=> (height: 110, width: 220)

Section 25.5: Overloading + for Dictionaries
As there is currently no simple way of combining dictionaries in Swift, it can be useful to overload the + and +=
operators in order to add this functionality using generics.

// Combines two dictionaries together. If both dictionaries contain
// the same key, the value of the right hand side dictionary is used.
func +<K, V>(lhs: [K : V], rhs: [K : V]) -> [K : V] {
 var combined = lhs
 for (key, value) in rhs {
 combined[key] = value
 }
 return combined
}

// The mutable variant of the + overload, allowing a dictionary
// to be appended to 'in-place'.
func +=<K, V>(inout lhs: [K : V], rhs: [K : V]) {
 for (key, value) in rhs {
 lhs[key] = value
 }
}
Version ≥ 3.0

As of Swift 3, inout should be placed before the argument type.

func +=<K, V>(lhs: inout [K : V], rhs: [K : V]) { ... }

Example usage:

let firstDict = ["hello" : "world"]
let secondDict = ["world" : "hello"]
var thirdDict = firstDict + secondDict // ["hello": "world", "world": "hello"]

thirdDict += ["hello":"bar", "baz":"qux"] // ["hello": "bar", "baz": "qux", "world": "hello"]

Section 25.6: Precedence of standard Swift operators
Operators that bound tighter (higher precedence) are listed first.

Operators Precedence group (≥3.0) Precedence Associativity
. ∞ left

?, !, ++, --, [], (), {} (postfix)

!, ~, +, -, ++, -- (prefix)

~> (swift ≤2.3) 255 left

<<, >> BitwiseShiftPrecedence 160 none

, /, %, &, & MultiplicationPrecedence 150 left

+, -, |, ^, &+, &- AdditionPrecedence 140 left

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AdvancedOperators.html#//apple_ref/doc/uid/TP40014097-CH27-ID42
http://stackoverflow.com/questions/26758297/what-is-the-tilde-greater-than-operator-used-for-in-swift
http://stackoverflow.com/questions/26758297/what-is-the-tilde-greater-than-operator-used-for-in-swift
http://stackoverflow.com/questions/26758297/what-is-the-tilde-greater-than-operator-used-for-in-swift
http://stackoverflow.com/questions/26758297/what-is-the-tilde-greater-than-operator-used-for-in-swift
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 139

..., ..< RangeFormationPrecedence 135 none

is, as, as?, as! CastingPrecedence 132 left
?? NilCoalescingPrecedence 131 right

<, <=, >, >=, ==, !=, ===, !==, ~= ComparisonPrecedence 130 none
&& LogicalConjunctionPrecedence 120 left
|| LogicalDisjunctionPrecedence 110 left

DefaultPrecedence* none

?...: TernaryPrecedence 100 right

=, +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^= AssignmentPrecedence 90 right, assignment
-> FunctionArrowPrecedence right
Version ≥ 3.0

The DefaultPrecedence precedence group is higher than TernaryPrecedence, but is unordered with the rest
of the operators. Other than this group, the rest of the precedences are linear.

This table can be also be found on Apple's API reference
The actual definition of the precedence groups can be found in the source code on GitHub

https://developer.apple.com/reference/swift/1851035-swift_standard_library_operators
https://github.com/apple/swift/blob/e6f8843c701a0ea72ddfe0b5538b815767a4ee5d/stdlib/public/core/Policy.swift#L532
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 140

Chapter 26: Method Swizzling
Section 26.1: Extending UIViewController and Swizzling
viewDidLoad
In Objective-C, method swizzling is the process of changing the implementation of an existing selector. This is
possible due to the way Selectors are mapped on a dispatch table, or a table of pointers to functions or methods.

Pure Swift methods are not dynamically dispatched by the Objective-C runtime, but we can still take advantage of
these tricks on any class that inherits from NSObject.

Here, we will extend UIViewController and swizzle viewDidLoad to add some custom logging:

extension UIViewController {

 // We cannot override load like we could in Objective-C, so override initialize instead
 public override static func initialize() {

 // Make a static struct for our dispatch token so only one exists in memory
 struct Static {
 static var token: dispatch_once_t = 0
 }

 // Wrap this in a dispatch_once block so it is only run once
 dispatch_once(&Static.token) {
 // Get the original selectors and method implementations, and swap them with our new
method
 let originalSelector = #selector(UIViewController.viewDidLoad)
 let swizzledSelector = #selector(UIViewController.myViewDidLoad)

 let originalMethod = class_getInstanceMethod(self, originalSelector)
 let swizzledMethod = class_getInstanceMethod(self, swizzledSelector)

 let didAddMethod = class_addMethod(self, originalSelector,
method_getImplementation(swizzledMethod), method_getTypeEncoding(swizzledMethod))

 // class_addMethod can fail if used incorrectly or with invalid pointers, so check to
make sure we were able to add the method to the lookup table successfully
 if didAddMethod {
 class_replaceMethod(self, swizzledSelector,
method_getImplementation(originalMethod), method_getTypeEncoding(originalMethod))
 } else {
 method_exchangeImplementations(originalMethod, swizzledMethod);
 }
 }
 }

 // Our new viewDidLoad function
 // In this example, we are just logging the name of the function, but this can be used to run
any custom code
 func myViewDidLoad() {
 // This is not recursive since we swapped the Selectors in initialize().
 // We cannot call super in an extension.
 self.myViewDidLoad()
 print(#function) // logs myViewDidLoad()
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 141

Section 26.2: Basics of Swift Swizzling
Let's swap the implementation of methodOne() and methodTwo() in our TestSwizzling class:

class TestSwizzling : NSObject {
 dynamic func methodOne()->Int{
 return 1
 }
}

extension TestSwizzling {

 //In Objective-C you'd perform the swizzling in load(),
 //but this method is not permitted in Swift
 override class func initialize()
 {

 struct Inner {
 static let i: () = {

 let originalSelector = #selector(TestSwizzling.methodOne)
 let swizzledSelector = #selector(TestSwizzling.methodTwo)
 let originalMethod = class_getInstanceMethod(TestSwizzling.self, originalSelector);
 let swizzledMethod = class_getInstanceMethod(TestSwizzling.self, swizzledSelector)

 method_exchangeImplementations(originalMethod, swizzledMethod)
 }
 }
 let _ = Inner.i
 }

 func methodTwo()->Int{
 // It will not be a recursive call anymore after the swizzling
 return methodTwo()+1
 }
}

var c = TestSwizzling()
print(c.methodOne())
print(c.methodTwo())

Section 26.3: Basics of Swizzling - Objective-C
Objective-C example of swizzling UIView's initWithFrame: method

static IMP original_initWithFrame;

+ (void)swizzleMethods {
 static BOOL swizzled = NO;
 if (!swizzled) {
 swizzled = YES;

 Method initWithFrameMethod =
 class_getInstanceMethod([UIView class], @selector(initWithFrame:));
 original_initWithFrame = method_setImplementation(
 initWithFrameMethod, (IMP)replacement_initWithFrame);
 }
}

static id replacement_initWithFrame(id self, SEL _cmd, CGRect rect) {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 142

 // This will be called instead of the original initWithFrame method on UIView
 // Do here whatever you need...

 // Bonus: This is how you would call the original initWithFrame method
 UIView *view =
 ((id (*)(id, SEL, CGRect))original_initWithFrame)(self, _cmd, rect);

 return view;
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 143

Chapter 27: Reflection
Section 27.1: Basic Usage for Mirror
Creating the class to be the subject of the Mirror

class Project {
 var title: String = ""
 var id: Int = 0
 var platform: String = ""
 var version: Int = 0
 var info: String?
}

Creating an instance that will actually be the subject of the mirror. Also here you can add values to the properties of
the Project class.

let sampleProject = Project()
sampleProject.title = "MirrorMirror"
sampleProject.id = 199
sampleProject.platform = "iOS"
sampleProject.version = 2
sampleProject.info = "test app for Reflection"

The code below shows the creating of Mirror instance. The children property of the mirror is a
AnyForwardCollection<Child> where Child is typealias tuple for subject's property and value. Child had a label:
String and value: Any.

let projectMirror = Mirror(reflecting: sampleProject)
let properties = projectMirror.children

print(properties.count) //5
print(properties.first?.label) //Optional("title")
print(properties.first!.value) //MirrorMirror
print()

for property in properties {
 print("\(property.label!):\(property.value)")
}

Output in Playground or Console in Xcode for the for loop above.

title:MirrorMirror
id:199
platform:iOS
version:2
info:Optional("test app for Reflection")

Tested in Playground on Xcode 8 beta 2

Section 27.2: Getting type and names of properties for a class
without having to instantiate it
Using the Swift class Mirror works if you want to extract name, value and type (Swift 3: type(of: value), Swift 2:
value.dynamicType) of properties for an instance of a certain class.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 144

If you class inherits from NSObject, you can use the method class_copyPropertyList together with
property_getAttributes to find out the name and types of properties for a class - without having an instance of
it. I created a project on Github for this, but here is the code:

func getTypesOfProperties(in clazz: NSObject.Type) -> Dictionary<String, Any>? {
 var count = UInt32()
 guard let properties = class_copyPropertyList(clazz, &count) else { return nil }
 var types: Dictionary<String, Any> = [:]
 for i in 0..<Int(count) {
 guard let property: objc_property_t = properties[i], let name = getNameOf(property:
property) else { continue }
 let type = getTypeOf(property: property)
 types[name] = type
 }
 free(properties)
 return types
}

func getTypeOf(property: objc_property_t) -> Any {
 guard let attributesAsNSString: NSString = NSString(utf8String:
property_getAttributes(property)) else { return Any.self }
 let attributes = attributesAsNSString as String
 let slices = attributes.components(separatedBy: "\"")
 guard slices.count > 1 else { return getPrimitiveDataType(withAttributes: attributes) }
 let objectClassName = slices[1]
 let objectClass = NSClassFromString(objectClassName) as! NSObject.Type
 return objectClass
}

 func getPrimitiveDataType(withAttributes attributes: String) -> Any {
 guard let letter = attributes.substring(from: 1, to: 2), let type =
primitiveDataTypes[letter] else { return Any.self }
 return type
 }

Where primitiveDataTypes is a Dictionary mapping a letter in the attribute string to a value type:

let primitiveDataTypes: Dictionary<String, Any> = [
 "c" : Int8.self,
 "s" : Int16.self,
 "i" : Int32.self,
 "q" : Int.self, //also: Int64, NSInteger, only true on 64 bit platforms
 "S" : UInt16.self,
 "I" : UInt32.self,
 "Q" : UInt.self, //also UInt64, only true on 64 bit platforms
 "B" : Bool.self,
 "d" : Double.self,
 "f" : Float.self,
 "{" : Decimal.self
]

 func getNameOf(property: objc_property_t) -> String? {
 guard let name: NSString = NSString(utf8String: property_getName(property)) else { return
nil }
 return name as String
 }

It can extract the NSObject.Type of all properties which class type inherits from NSObject such as NSDate (Swift3:
Date), NSString(Swift3: String?) and NSNumber, however it is store in the type Any (as you can see as the type of the
value of the Dictionary returned by the method). This is due to the limitations of value types such as Int, Int32,

https://github.com/Sajjon/SwiftReflection
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 145

Bool. Since those types do not inherit from NSObject, calling .self on e.g. an Int - Int.self does not return
NSObject.Type, but rather the type Any. Thus the method returns Dictionary<String, Any>? and not
Dictionary<String, NSObject.Type>?.

You can use this method like this:

class Book: NSObject {
 let title: String
 let author: String?
 let numberOfPages: Int
 let released: Date
 let isPocket: Bool

 init(title: String, author: String?, numberOfPages: Int, released: Date, isPocket: Bool) {
 self.title = title
 self.author = author
 self.numberOfPages = numberOfPages
 self.released = released
 self.isPocket = isPocket
 }
}

guard let types = getTypesOfProperties(in: Book.self) else { return }
for (name, type) in types {
 print("'\(name)' has type '\(type)'")
}
// Prints:
// 'title' has type 'NSString'
// 'numberOfPages' has type 'Int'
// 'author' has type 'NSString'
// 'released' has type 'NSDate'
// 'isPocket' has type 'Bool'

You can also try to cast the Any to NSObject.Type, which will succeed for all properties inheriting from NSObject,
then you can check the type using standard == operator:

func checkPropertiesOfBook() {
 guard let types = getTypesOfProperties(in: Book.self) else { return }
 for (name, type) in types {
 if let objectType = type as? NSObject.Type {
 if objectType == NSDate.self {
 print("Property named '\(name)' has type 'NSDate'")
 } else if objectType == NSString.self {
 print("Property named '\(name)' has type 'NSString'")
 }
 }
 }
}

If you declare this custom == operator:

func ==(rhs: Any, lhs: Any) -> Bool {
 let rhsType: String = "\(rhs)"
 let lhsType: String = "\(lhs)"
 let same = rhsType == lhsType
 return same
}

You can then even check the type of value types like this:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 146

func checkPropertiesOfBook() {
 guard let types = getTypesOfProperties(in: Book.self) else { return }
 for (name, type) in types {
 if type == Int.self {
 print("Property named '\(name)' has type 'Int'")
 } else if type == Bool.self {
 print("Property named '\(name)' has type 'Bool'")
 }
 }
}

LIMITATIONS This solution does not work when value types are optionals. If you have declared a property in you
NSObject subclass like this: var myOptionalInt: Int?, the code above won't find that property because the
method class_copyPropertyList does not contain optional value types.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 147

Chapter 28: Access Control
Section 28.1: Basic Example using a Struct
Version ≥ 3.0

In Swift 3 there are multiple access-levels. This example uses them all except for open:

public struct Car {

 public let make: String
 let model: String //Optional keyword: will automatically be "internal"
 private let fullName: String
 fileprivate var otherName: String

 public init(_ make: String, model: String) {
 self.make = make
 self.model = model
 self.fullName = "\(make)\(model)"
 self.otherName = "\(model) - \(make)"
 }
}

Assume myCar was initialized like this:

let myCar = Car("Apple", model: "iCar")

Car.make (public)
print(myCar.make)

This print will work everywhere, including targets that import Car.

Car.model (internal)
print(myCar.model)

This will compile if the code is in the same target as Car.

Car.otherName (fileprivate)
print(myCar.otherName)

This will only work if the code is in the same file as Car.

Car.fullName (private)
print(myCar.fullName)

This won't work in Swift 3. private properties can only be accessed within the same struct/class.

public struct Car {

 public let make: String //public
 let model: String //internal
 private let fullName: String! //private

 public init(_ make: String, model model: String) {
 self.make = make

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 148

 self.model = model
 self.fullName = "\(make)\(model)"
 }
}

If the entity has multiple associated access levels, Swift looks for the lowest level of access. If a private variable
exists in a public class, the variable will still be considered private.

Section 28.2: Subclassing Example
public class SuperClass {
 private func secretMethod() {}
}

internal class SubClass: SuperClass {
 override internal func secretMethod() {
 super.secretMethod()
 }
}

Section 28.3: Getters and Setters Example
struct Square {
 private(set) var area = 0

 var side: Int = 0 {
 didSet {
 area = side*side
 }
 }
}

public struct Square {
 public private(set) var area = 0
 public var side: Int = 0 {
 didSet {
 area = side*side
 }
 }
 public init() {}
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 149

Chapter 29: Closures
Section 29.1: Closure basics
Closures (also known as blocks or lambdas) are pieces of code which can be stored and passed around within
your program.

let sayHi = { print("Hello") }
// The type of sayHi is "() -> ()", aka "() -> Void"

sayHi() // prints "Hello"

Like other functions, closures can accept arguments and return results or throw errors:

let addInts = { (x: Int, y: Int) -> Int in
 return x + y
}
// The type of addInts is "(Int, Int) -> Int"

let result = addInts(1, 2) // result is 3

let divideInts = { (x: Int, y: Int) throws -> Int in
 if y == 0 {
 throw MyErrors.DivisionByZero
 }
 return x / y
}
// The type of divideInts is "(Int, Int) throws -> Int"

Closures can capture values from their scope:

// This function returns another function which returns an integer
func makeProducer(x: Int) -> (() -> Int) {
 let closure = { x } // x is captured by the closure
 return closure
}

// These two function calls use the exact same code,
// but each closure has captured different values.
let three = makeProducer(3)
let four = makeProducer(4)
three() // returns 3
four() // returns 4

Closures can be passed directly into functions:

let squares = (1...10).map({ $0 * $0 }) // returns [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
let squares = (1...10).map { $0 * $0 }

NSURLSession.sharedSession().dataTaskWithURL(myURL,
 completionHandler: { (data: NSData?, response: NSURLResponse?, error: NSError?) in
 if let data = data {
 print("Request succeeded, data: \(data)")
 } else {
 print("Request failed: \(error)")
 }
 }).resume()

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 150

Section 29.2: Syntax variations
The basic closure syntax is

{ [capture list] (parameters) throws-ness -> return type in body }.

Many of these parts can be omitted, so there are several equivalent ways to write simple closures:

let addOne = { [] (x: Int) -> Int in return x + 1 }
let addOne = { [] (x: Int) -> Int in x + 1 }
let addOne = { (x: Int) -> Int in x + 1 }
let addOne = { x -> Int in x + 1 }
let addOne = { x in x + 1 }
let addOne = { $0 + 1 }

let addOneOrThrow = { [] (x: Int) throws -> Int in return x + 1 }
let addOneOrThrow = { [] (x: Int) throws -> Int in x + 1 }
let addOneOrThrow = { (x: Int) throws -> Int in x + 1 }
let addOneOrThrow = { x throws -> Int in x + 1 }
let addOneOrThrow = { x throws in x + 1 }

The capture list can be omitted if it's empty.
Parameters don't need type annotations if their types can be inferred.
The return type doesn't need to be specified if it can be inferred.
Parameters don't have to be named; instead they can be referred to with $0, $1, $2, etc.
If the closure contains a single expression, whose value is to be returned, the return keyword can be
omitted.
If the closure is inferred to throw an error, is written in a context which expects a throwing closure, or doesn't
throw an error, throws can be omitted.

// The closure's type is unknown, so we have to specify the type of x and y.
// The output type is inferred to be Int, because the + operator for Ints returns Int.
let addInts = { (x: Int, y: Int) in x + y }

// The closure's type is specified, so we can omit the parameters' type annotations.
let addInts: (Int, Int) -> Int = { x, y in x + y }
let addInts: (Int, Int) -> Int = { $0 + $1 }

Section 29.3: Passing closures into functions
Functions may accept closures (or other functions) as parameters:

func foo(value: Double, block: () -> Void) { ... }
func foo(value: Double, block: Int -> Int) { ... }
func foo(value: Double, block: (Int, Int) -> String) { ... }

Trailing closure syntax

If a function's last parameter is a closure, the closure braces {/} may be written after the function invocation:

foo(3.5, block: { print("Hello") })

foo(3.5) { print("Hello") }

dispatch_async(dispatch_get_main_queue(), {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 151

 print("Hello from the main queue")
})

dispatch_async(dispatch_get_main_queue()) {
 print("Hello from the main queue")
}

If a function's only argument is a closure, you may also omit the pair of parentheses () when calling it with the
trailing closure syntax:

func bar(block: () -> Void) { ... }

bar() { print("Hello") }

bar { print("Hello") }

@noescape parameters

Closure parameters marked @noescape are guaranteed to execute before the function call returns, so using self. is
not required inside the closure body:

func executeNow(scape block: () -> Void) { // Since `block` is @noescape, it's illegal to store it to an external
variable. // We can only call it right here. block() } func executeLater(block: () -> Void) {
dispatch_async(dispatch_get_main_queue()) { // Some time in the future... block() } }

class MyClass {
 var x = 0
 func showExamples() {
 // error: reference to property 'x' in closure requires explicit 'self.' to make capture
semantics explicit
 executeLater { x = 1 }

 executeLater { self.x = 2 } // ok, the closure explicitly captures self

 // Here "self." is not required, because executeNow() takes a @noescape block.
 executeNow { x = 3 }

 // Again, self. is not required, because map() uses @noescape.
 [1, 2, 3].map { $0 + x }
 }
}

Swift 3 note:

Note that in Swift 3, you no longer mark blocks as @noescape. Blocks are now not escaping by default. In Swift 3,
instead of marking a closure as non-escaping, you mark a function parameter that is an escaping closure as
escaping using the "@escaping" keyword.

throws and rethrows

Closures, like other functions, may throw errors:

func executeNowOrIgnoreError(block: () ws -> Void) { do { try block() } catch { print("error: \(error)") } }

The function may, of course, pass the error along to its caller:

func executeNowOrThrow(block: () ws -> Void) throws { try block() }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 152

However, if the block passed in doesn't throw, the caller is still stuck with a throwing function:

// It's annoying that this requires "try", because "print()" can't throw!
try executeNowOrThrow { print("Just printing, no errors here!") }

The solution is rethrows, which designates that the function can only throw if its closure parameter throws:

func executeNowOrRethrow(block: () ws -> Void) rethrows { try block() } // "try" is not required here, because the
block can't throw an error. executeNowOrRethrow { print("No errors are thrown from this closure") } // This block
can throw an error, so "try" is required. try executeNowOrRethrow { throw MyError.Example }

Many standard library functions use rethrows, including map(), filter(), and indexOf().

Section 29.4: Captures, strong/weak references, and retain
cycles
class MyClass {
 func sayHi() { print("Hello") }
 deinit { print("Goodbye") }
}

When a closure captures a reference type (a class instance), it holds a strong reference by default:

let closure: () -> Void
do {
 let obj = MyClass()
 // Captures a strong reference to `obj`: the object will be kept alive
 // as long as the closure itself is alive.
 closure = { obj.sayHi() }
 closure() // The object is still alive; prints "Hello"
} // obj goes out of scope
closure() // The object is still alive; prints "Hello"

The closure's capture list can be used to specify a weak or unowned reference:

let closure: () -> Void
do {
 let obj = MyClass()
 // Captures a weak reference to `obj`: the closure will not keep the object alive;
 // the object becomes optional inside the closure.
 closure = { [weak obj] in obj?.sayHi() }
 closure() // The object is still alive; prints "Hello"
} // obj goes out of scope and is deallocated; prints "Goodbye"
closure() // `obj` is nil from inside the closure; this does not print anything.

let closure: () -> Void
do {
 let obj = MyClass()
 // Captures an unowned reference to `obj`: the closure will not keep the object alive;
 // the object is always assumed to be accessible while the closure is alive.
 closure = { [unowned obj] in obj.sayHi() }
 closure() // The object is still alive; prints "Hello"
} // obj goes out of scope and is deallocated; prints "Goodbye"
closure() // crash! obj is being accessed after it's deallocated.

For more information, see the Memory Management topic, and the Automatic Reference Counting section of The
Swift Programming Language.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 153

Retain cycles

If an object holds onto a closure, which also holds a strong reference to the object, this is a retain cycle. Unless the
cycle is broken, the memory storing the object and closure will be leaked (never reclaimed).

class Game {
 var score = 0
 let controller: GCController
 init(controller: GCController) {
 self.controller = controller

 // BAD: the block captures self strongly, but self holds the controller
 // (and thus the block) strongly, which is a cycle.
 self.controller.controllerPausedHandler = {
 let curScore = self.score
 print("Pause button pressed; current score: \(curScore)")
 }

 // SOLUTION: use `weak self` to break the cycle.
 self.controller.controllerPausedHandler = { [weak self] in
 guard let strongSelf = self else { return }
 let curScore = strongSelf.score
 print("Pause button pressed; current score: \(curScore)")
 }
 }
}

Section 29.5: Using closures for asynchronous coding
Closures are often used for asynchronous tasks, for example when fetching data from a website.

Version < 3.0

func getData(urlString: String, callback: (result: NSData?) -> Void) {

 // Turn the URL string into an NSURLRequest.
 guard let url = NSURL(string: urlString) else { return }
 let request = NSURLRequest(URL: url)

 // Asynchronously fetch data from the given URL.
 let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {(data: NSData?, response:
NSURLResponse?, error: NSError?) in

 // We now have the NSData response from the website.
 // We can get it "out" of the function by using the callback
 // that was passed to this function as a parameter.

 callback(result: data)
 }

 task.resume()
}

This function is asynchronous, so will not block the thread it is being called on (it won't freeze the interface if called
on the main thread of your GUI application).

Version < 3.0

print("1. Going to call getData")

getData("http://www.example.com") {(result: NSData?) -> Void in

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 154

 // Called when the data from http://www.example.com has been fetched.
 print("2. Fetched data")
}

print("3. Called getData")

Because the task is asynchronous, the output will usually look like this:

"1. Going to call getData"
"3. Called getData"
"2. Fetched data"

Because the code inside of the closure, print("2. Fetched data"), will not be called until the data from the URL is
fetched.

Section 29.6: Closures and Type Alias
A closure can be defined with a typealias. This provides a convenient type placeholder if the same closure
signature is used in multiple places. For example, common network request callbacks or user interface event
handlers make great candidates for being "named" with a type alias.

public typealias ureType = (x: Int, y: Int) -> Int

You can then define a function using the typealias:

public func closureFunction(closure: ureType) { let z = closure(1, 2) } closureFunction() { (x: Int, y: Int) -> Int in
return x + y }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 155

Chapter 30: Initializers
Section 30.1: Convenience init
Swift classes supports having multiple ways of being initialized. Following Apple's specs this 3 rules must be
respected:

A designated initializer must call a designated initializer from its immediate superclass.1.

A convenience initializer must call another initializer from the same class.2.
A convenience initializer must ultimately call a designated initializer.3.

https://i.stack.imgur.com/7ie2O.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 156

class Foo {

 var someString: String
 var someValue: Int
 var someBool: Bool

 // Designated Initializer
 init(someString: String, someValue: Int, someBool: Bool)
 {
 self.someString = someString
 self.someValue = someValue
 self.someBool = someBool
 }

 // A convenience initializer must call another initializer from the same class.
 convenience init()
 {
 self.init(otherString: "")
 }

https://i.stack.imgur.com/y411s.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 157

 // A convenience initializer must ultimately call a designated initializer.
convenience init(otherString: String)
 {
 self.init(someString: otherString, someValue: 0, someBool: false)
 }
}

class Baz: Foo
{
 var someFloat: Float

 // Designed initializer
 init(someFloat: Float)
 {
 self.someFloat = someFloat

 // A designated initializer must call a designated initializer from its immediate
superclass.
 super.init(someString: "", someValue: 0, someBool: false)
 }

 // A convenience initializer must call another initializer from the same class.
 convenience init()
 {
 self.init(someFloat: 0)
 }
}

Designated Initializer
let c = Foo(someString: "Some string", someValue: 10, someBool: true)

Convenience init()
let a = Foo()

Convenience init(otherString: String)
let b = Foo(otherString: "Some string")

Designated Initializer (will call the superclass Designated Initializer)
let d = Baz(someFloat: 3)

Convenience init()
let e = Baz()

Image source: The Swift Programming Language

Section 30.2: Setting default property values
You can use an initializer to set default property values:

struct Example {
 var upvotes: Int
 init() {
 upvotes = 42
 }

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 158

}
let myExample = Example() // call the initializer
print(myExample.upvotes) // prints: 42

Or, specify default property values as a part of the property's declaration:

struct Example {
 var upvotes = 42 // the type 'Int' is inferred here
}

Classes and structs must set all stored properties to an appropriate initial value by the time an instance is created.
This example will not compile, because the initializer did not give an initial value for downvotes:

struct Example {
 var upvotes: Int
 var downvotes: Int
 init() {
 upvotes = 0
 } // error: Return from initializer without initializing all stored properties
}

Section 30.3: Customizing initialization with parameters
struct MetricDistance {
 var distanceInMeters: Double

 init(fromCentimeters centimeters: Double) {
 distanceInMeters = centimeters / 100
 }
 init(fromKilometers kilos: Double) {
 distanceInMeters = kilos * 1000
 }
}

let myDistance = MetricDistance(fromCentimeters: 42)
// myDistance.distanceInMeters is 0.42
let myOtherDistance = MetricDistance(fromKilometers: 42)
// myOtherDistance.distanceInMeters is 42000

Note that you cannot omit the parameter labels:

let myBadDistance = MetricDistance(42) // error: argument labels do not match any available
overloads

In order to allow omission of parameter labels, use an underscore _ as the label:

struct MetricDistance {
 var distanceInMeters: Double
 init(_ meters: Double) {
 distanceInMeters = meters
 }
}
let myDistance = MetricDistance(42) // distanceInMeters = 42

If your argument labels share names with one or more properties, use self to explicitly set the property values:

struct Color {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 159

 var red, green, blue: Double
 init(red: Double, green: Double, blue: Double) {
 self.red = red
 self.green = green
 self.blue = blue
 }
}

Section 30.4: Throwable Initilizer
Using Error Handling to make Struct(or class) initializer as throwable initializer:

Example Error Handling enum:

enum ValidationError: Error {
 case invalid
}

You can use Error Handling enum to check the parameter for the Struct(or class) meet expected requirement

struct User {
 let name: String

 init(name: String?) throws {

 guard let name = name else {
 ValidationError.invalid
 }

 self.name = name
 }
}

Now, you can use throwable initializer by:

do {
 let user = try User(name: "Sample name")

 // success
}
catch ValidationError.invalid {
 // handle error
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 160

Chapter 31: Associated Objects
Section 31.1: Property, in a protocol extension, achieved using
associated object
In Swift, protocol extensions cannot have true properties.

However, in practice you can use the "associated object" technique. The result is almost exactly like a "real"
property.

Here is the exact technique for adding an "associated object" to a protocol extension:

Fundamentally, you use the objective-c "objc_getAssociatedObject" and _set calls.

The basic calls are:

get {
 return objc_getAssociatedObject(self, & _Handle) as! YourType
 }
set {
 objc_setAssociatedObject(self, & _Handle, newValue, .OBJC_ASSOCIATION_RETAIN)
 }

Here's a full example. The two critical points are:

In the protocol, you must use ": class" to avoid the mutation problem.1.

In the extension, you must use "where Self:UIViewController" (or whatever appropriate class) to give the2.
confirming type.

So, for an example property "p":

import Foundation
import UIKit
import ObjectiveC // don't forget this

var _Handle: UInt8 = 42 // it can be any value

protocol Able: class {
 var click:UIView? { get set }
 var x:CGFloat? { get set }
 // note that you >> do not << declare p here
}

extension Able where Self:UIViewController {

 var p:YourType { // YourType might be, say, an Enum
 get {
 return objc_getAssociatedObject(self, & _Handle) as! YourType
 // HOWEVER, SEE BELOW
 }
 set {
 objc_setAssociatedObject(self, & _Handle, newValue, .OBJC_ASSOCIATION_RETAIN)
 // often, you'll want to run some sort of "setter" here...
 __setter()
 }
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 161

 func __setter() { something = p.blah() }

 func someOtherExtensionFunction() { p.blah() }
 // it's ok to use "p" inside other extension functions,
 // and you can use p anywhere in the conforming class
}

In any conforming class, you have now "added" the property "p":

You can use "p" just as you would use any ordinary property in the conforming class. Example:

class Clock:UIViewController, Able {
 var u:Int = 0

 func blah() {
 u = ...
 ... = u
 // use "p" as you would any normal property
 p = ...
 ... = p
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 pm = .none // "p" MUST be "initialized" somewhere in Clock
 }
}

Note. You MUST initialize the pseudo-property.

Xcode will not enforce you initializing "p" in the conforming class.

It is essential that you initialize "p", perhaps in viewDidLoad of the confirming class.

It is worth remembering that p is actually just a computed property. p is actually just two functions, with syntactic
sugar. There is no p "variable" anywhere: the compiler does not "assign some memory for p" in any sense. For this
reason, it is meaningless to expect Xcode to enforce "initializing p".

Indeed, to speak more accurately, you must remember to "use p for the first time, as if you were initializing it".
(Again, that would very likely be in your viewDidLoad code.)

Regarding the getter as such.

Note that it will crash if the getter is called before a value for "p" is set.

To avoid that, consider code such as:

 get {
 let g = objc_getAssociatedObject(self, &_Handle)
 if (g == nil) {
 objc_setAssociatedObject(self, &_Handle, _default initial value_, .OBJC_ASSOCIATION)
 return _default initial value_
 }
 return objc_getAssociatedObject(self, &_Handle) as! YourType
 }

To repeat. Xcode will not enforce you initializing p in the conforming class. It is essential that you initialize p, say in

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 162

viewDidLoad of the conforming class.

Making the code simpler...

You may wish to use these two global functions:

func _aoGet(_ ss: Any!, _ handlePointer: UnsafeRawPointer!, _ safeValue: Any!)->Any! {
 let g = objc_getAssociatedObject(ss, handlePointer)
 if (g == nil) {
 objc_setAssociatedObject(ss, handlePointer, safeValue, .OBJC_ASSOCIATION_RETAIN)
 return safeValue
 }
 return objc_getAssociatedObject(ss, handlePointer)
}

func _aoSet(_ ss: Any!, _ handlePointer: UnsafeRawPointer!, _ val: Any!) {
 objc_setAssociatedObject(ss, handlePointer, val, .OBJC_ASSOCIATION_RETAIN)
}

Note that they do nothing, whatsoever, other than save typing and make the code more readable. (They are
essentially macros or inline functions.)

Your code then becomes:

protocol PMable: class {
 var click:UILabel? { get set } // ordinary properties here
}

var _pHandle: UInt8 = 321

extension PMable where Self:UIViewController {

 var p:P {
 get {
 return _aoGet(self, &_pHandle, P()) as! P
 }
 set {
 _aoSet(self, &_pHandle, newValue)
 __pmSetter()
 }
 }

 func __pmSetter() {
 click!.text = String(p)
 }

 func someFunction() {
 p.blah()
 }
}

(In the example at _aoGet, P is initalizable: instead of P() you could use "", 0, or any default value.)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 163

Chapter 32: Concurrency
Section 32.1: Obtaining a Grand Central Dispatch (GCD) queue
Grand Central Dispatch works on the concept of "Dispatch Queues". A dispatch queue executes tasks you designate
in the order which they are passed. There are three types of dispatch queues:

Serial Dispatch Queues (aka private dispatch queues) execute one task at a time, in order. They are
frequently used to synchronize access to a resource.
Concurrent Dispatch Queues (aka global dispatch queues) execute one or more tasks concurrently.
The Main Dispatch Queue executes tasks on the main thread.

To access the main queue:

Version = 3.0

let mainQueue = DispatchQueue.main
Version < 3.0

let mainQueue = dispatch_get_main_queue()

The system provides concurrent global dispatch queues (global to your application), with varying priorities. You can
access these queues using the DispatchQueue class in Swift 3:

Version = 3.0

let globalConcurrentQueue = DispatchQueue.global(qos: .default)

equivalent to

let globalConcurrentQueue = DispatchQueue.global()
Version < 3.0

let globalConcurrentQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)

In iOS 8 or later, the possible quality of service values which may be passed are .userInteractive,
.userInitiated, .default, .utility, and .background. These replace the DISPATCH_QUEUE_PRIORITY_ constants.

You can also create your own queues with varying priorities:

Version = 3.0

let myConcurrentQueue = DispatchQueue(label: "my-concurrent-queue", qos: .userInitiated,
attributes: [.concurrent], autoreleaseFrequency: .workItem, target: nil)
let mySerialQueue = DispatchQueue(label: "my-serial-queue", qos: .background, attributes: [],
autoreleaseFrequency: .workItem, target: nil)
Version < 3.0

let myConcurrentQueue = dispatch_queue_create("my-concurrent-queue", DISPATCH_QUEUE_CONCURRENT)
let mySerialQueue = dispatch_queue_create("my-serial-queue", DISPATCH_QUEUE_SERIAL)

In Swift 3, queues created with this initializer are serial by default, and passing .workItem for autorelease frequency
ensures an autorelease pool is created and drained for each work item. There is also .never, which means you will
be managing your own autorelease pools yourself, or .inherit which inherits the setting from the environment. In
most cases you probably won't use .never except in cases of extreme customization.

Section 32.2: Concurrent Loops
GCD provides mechanism for performing a loop, whereby the loops happen concurrently with respect to each

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 164

other. This is very useful when performing a series of computationally expensive calculations.

Consider this loop:

for index in 0 ..< iterations {
 // Do something computationally expensive here
}

You can perform those calculations concurrently using concurrentPerform (in Swift 3) or dispatch_apply (in Swift
2):

Version = 3.0

DispatchQueue.concurrentPerform(iterations: iterations) { index in
 // Do something computationally expensive here
}
Version < 3.0

dispatch_apply(iterations, queue) { index in
 // Do something computationally expensive here
}

The loop closure will be invoked for each index from 0 to, but not including, iterations. These iterations will be
run concurrently with respect to each other, and thus the order that they run is not guaranteed. The actual number
of iterations that happen concurrently at any given time is generally dictated by the capabilities of the device in
question (e.g. how many cores does the device have).

A couple of special considerations:

The concurrentPerform/dispatch_apply may run the loops concurrently with respect to each other, but this
all happens synchronously with respect to the thread from which you call it. So, do not call this from the main
thread, as this will block that thread until the loop is done.

Because these loops happen concurrently with respect to each other, you are responsible for ensuring the
thread-safety of the results. For example, if updating some dictionary with the results of these
computationally expensive calculations, make sure to synchronize those updates yourself.

Note, there is some overhead associated in running concurrent loops. Thus, if the calculations being
performed inside the loop are not sufficiently computationally intensive, you may find that any performance
gained by using concurrent loops may be diminished, if not be completely offset, by the overhead associated
with the synchronizing all of these concurrent threads.

So, you are responsible determining the correct amount of work to be performed in each iteration of the
loop. If the calculations are too simple, you may employ "striding" to include more work per loop. For
example, rather than doing a concurrent loop with 1 million trivial calculations, you may do 100 iterations in
your loop, doing 10,000 calculations per loop. That way there is enough work being performed on each
thread, so the overhead associated with managing these concurrent loops becomes less significant.

Section 32.3: Running tasks in a Grand Central Dispatch (GCD)
queue
Version = 3.0

To run tasks on a dispatch queue, use the sync, async, and after methods.

To dispatch a task to a queue asynchronously:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 165

let queue = DispatchQueue(label: "myQueueName")

queue.async {
 //do something

 DispatchQueue.main.async {
 //this will be called in main thread
 //any UI updates should be placed here
 }
}
// ... code here will execute immediately, before the task finished

To dispatch a task to a queue synchronously:

queue.sync {
 // Do some task
}
// ... code here will not execute until the task is finished

To dispatch a task to a queue after a certain number of seconds:

queue.asyncAfter(deadline: .now() + 3) {
 //this will be executed in a background-thread after 3 seconds
}
// ... code here will execute immediately, before the task finished

NOTE: Any updates of the user-interface should be called on the main thread! Make sure, that you put
the code for UI updates inside DispatchQueue.main.async { ... }

Version = 2.0

Types of queue:

let mainQueue = dispatch_get_main_queue()
let highQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)
let backgroundQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0)

To dispatch a task to a queue asynchronously:

dispatch_async(queue) {
 // Your code run run asynchronously. Code is queued and executed
 // at some point in the future.
}
// Code after the async block will execute immediately

To dispatch a task to a queue synchronously:

dispatch_sync(queue) {
 // Your sync code
}
// Code after the sync block will wait until the sync task finished

To dispatch a task to after a time interval (use NSEC_PER_SEC to convert seconds to nanoseconds):

dispatch_after(dispatch_time(DISPATCH_TIME_NOW, Int64(2.5 * Double(NSEC_PER_SEC))),

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 166

dispatch_get_main_queue()) {
 // Code to be performed in 2.5 seconds here
}

To execute a task asynchronously and than update the UI:

dispatch_async(queue) {
 // Your time consuming code here
 dispatch_async(dispatch_get_main_queue()) {
 // Update the UI code
 }
}

NOTE: Any updates of the user-interface should be called on the main thread! Make sure, that you put
the code for UI updates inside dispatch_async(dispatch_get_main_queue()) { ... }

Section 32.4: Running Tasks in an OperationQueue
You can think of an OperationQueue as a line of tasks waiting to be executed. Unlike dispatch queues in GCD,
operation queues are not FIFO (first-in-first-out). Instead, they execute tasks as soon as they are ready to be
executed, as long as there are enough system resources to allow for it.

Get the main OperationQueue:

Version ≥ 3.0

let mainQueue = OperationQueue.main

Create a custom OperationQueue:

Version ≥ 3.0

let queue = OperationQueue()
queue.name = "My Queue"
queue.qualityOfService = .default

Quality of Service specifies the importance of the work, or how much the user is likely to be counting on immediate
results from the task.

Add an Operation to an OperationQueue:

Version ≥ 3.0

// An instance of some Operation subclass
let operation = BlockOperation {
 // perform task here
}

queue.addOperation(operation)

Add a block to an OperationQueue:

Version ≥ 3.0

myQueue.addOperation {
 // some task
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 167

Add multiple Operations to an OperationQueue:

Version ≥ 3.0

let operations = [Operation]()
// Fill array with Operations

myQueue.addOperation(operations)

Adjust how many Operations may be run concurrently within the queue:

myQueue.maxConcurrentOperationCount = 3 // 3 operations may execute at once

// Sets number of concurrent operations based on current system conditions
myQueue.maxConcurrentOperationCount = NSOperationQueueDefaultMaxConcurrentOperationCount

Suspending a queue will prevent it from starting the execution of any existing, unstarted operations or of any new
operations added to the queue. The way to resume this queue is to set the isSuspended back to false:

Version ≥ 3.0

myQueue.isSuspended = true

// Re-enable execution
myQueue.isSuspended = false

Suspending an OperationQueue does not stop or cancel operations that are already executing. One should only
attempt suspending a queue that you created, not global queues or the main queue.

Section 32.5: Creating High-Level Operations
The Foundation framework provides the Operation type, which represents a high-level object that encapsulates a
portion of work that may be executed on a queue. Not only does the queue coordinate the performance of those
operations, but you can also establish dependencies between operations, create cancelable operations, constrain
the degree of concurrency employed by the operation queue, etc.

Operations become ready to execute when all of its dependencies are finished executing. The isReady property
then changes to true.

Create a simple non-concurrent Operation subclass:

Version ≥ 3.0

class MyOperation: Operation {

 init(<parameters>) {
 // Do any setup work here
 }

 override func main() {
 // Perform the task
 }

}
Version ≤ 2.3

class MyOperation: NSOperation {

 init(<parameters>) {
 // Do any setup work here
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 168

 override func main() {
 // Perform the task
 }

}

Add an operation to an OperationQueue:

Version ≥ 1.0

myQueue.addOperation(operation)

This will execute the operation concurrently on the queue.

Manage dependencies on an Operation.

Dependencies define other Operations that must execute on a queue before that Operation is considered ready to
execute.

Version ≥ 1.0

operation2.addDependency(operation1)

operation2.removeDependency(operation1)

Run an Operation without a queue:

Version ≥ 1.0

 operation.start()

Dependencies will be ignored. If this is a concurrent operation, the task may still be executed concurrently if its
start method offloads work to background queues.

Concurrent Operations.

If the task that an Operation is to perform is, itself, asynchronous, (e.g. a URLSession data task), you should
implement the Operation as a concurrent operation. In this case, your isAsynchronous implementation should
return true, you'd generally have start method that performs some setup, then calls its main method which
actually executes the task.

When implementing an asynchronous Operation begins you must implement isExecuting, isFinished methods
and KVO. So, when execution starts, isExecuting property changes to true. When an Operation finishes its task,
isExecuting is set to false, and isFinished is set to true. If the operation it is cancelled both isCancelled and
isFinished change to true. All of these properties are key-value observable.

Cancel an Operation.

Calling cancel simply changes the isCancelled property to true. To respond to cancellation from within your own
Operation subclass, you should check the value of isCancelled at least periodically within main and respond
appropriately.

Version ≥ 1.0

operation.cancel()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 169

Chapter 33: Getting Started with Protocol
Oriented Programming
Section 33.1: Using protocols as first class types
Protocol oriented programing can be used as a core Swift design pattern.

Different types are able to conform to the same protocol, value types can even conform to multiple protocols and
even provide default method implementation.

Initially protocols are defined that can represent commonly used properties and/or methods with either specific or
generic types.

protocol ItemData {

 var title: String { get }
 var description: String { get }
 var thumbnailURL: NSURL { get }
 var created: NSDate { get }
 var updated: NSDate { get }

}

protocol DisplayItem {

 func hasBeenUpdated() -> Bool
 func getFormattedTitle() -> String
 func getFormattedDescription() -> String

}

protocol GetAPIItemDataOperation {

 static func get(url: NSURL, completed: ([ItemData]) -> Void)
}

A default implementation for the get method can be created, though if desired conforming types may override the
implementation.

extension GetAPIItemDataOperation {

 static func get(url: NSURL, completed: ([ItemData]) -> Void) {

 let date = NSDate(
 timeIntervalSinceNow: NSDate().timeIntervalSince1970
 + 5000)

 // get data from url
 let urlData: [String: AnyObject] = [
 "title": "Red Camaro",
 "desc": "A fast red car.",
 "thumb":"http://cars.images.com/red-camaro.png",
 "created": NSDate(), "updated": date]

 // in this example forced unwrapping is used
 // forced unwrapping should never be used in practice
 // instead conditional unwrapping should be used (guard or if/let)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 170

 let item = Item(
 title: urlData["title"] as! String,
 description: urlData["desc"] as! String,
 thumbnailURL: NSURL(string: urlData["thumb"] as! String)!,
 created: urlData["created"] as! NSDate,
 updated: urlData["updated"] as! NSDate)

 completed([item])

 }
}

struct ItemOperation: GetAPIItemDataOperation { }

A value type that conforms to the ItemData protocol, this value type is also able to conform to other protocols.

struct Item: ItemData {

 let title: String
 let description: String
 let thumbnailURL: NSURL
 let created: NSDate
 let updated: NSDate

}

Here the item struct is extended to conform to a display item.

extension Item: DisplayItem {

 func hasBeenUpdated() -> Bool {
 return updated.timeIntervalSince1970 >
 created.timeIntervalSince1970
 }

 func getFormattedTitle() -> String {
 return title.stringByTrimmingCharactersInSet(
 .whitespaceAndNewlineCharacterSet())
 }

 func getFormattedDescription() -> String {
 return description.stringByTrimmingCharactersInSet(
 .whitespaceAndNewlineCharacterSet())
 }
}

An example call site for using the static get method.

ItemOperation.get(NSURL()) { (itemData) in

 // perhaps inform a view of new data
 // or parse the data for user requested info, etc.
 dispatch_async(dispatch_get_main_queue(), {

 // self.items = itemData
 })

}

Different use cases will require different implementations. The main idea here is to show conformance from

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 171

varying types where the protocol is the main point of the focus in the design. In this example perhaps the API data
is conditionally saved to a Core Data entity.

// the default core data created classes + extension
class LocalItem: NSManagedObject { }

extension LocalItem {

 @NSManaged var title: String
 @NSManaged var itemDescription: String
 @NSManaged var thumbnailURLStr: String
 @NSManaged var createdAt: NSDate
 @NSManaged var updatedAt: NSDate
}

Here the Core Data backed class can also conform to the DisplayItem protocol.

extension LocalItem: DisplayItem {

 func hasBeenUpdated() -> Bool {
 return updatedAt.timeIntervalSince1970 >
 createdAt.timeIntervalSince1970
 }

 func getFormattedTitle() -> String {
 return title.stringByTrimmingCharactersInSet(
 .whitespaceAndNewlineCharacterSet())
 }

 func getFormattedDescription() -> String {
 return itemDescription.stringByTrimmingCharactersInSet(
 .whitespaceAndNewlineCharacterSet())
 }
}

// In use, the core data results can be
// conditionally casts as a protocol
class MyController: UIViewController {

 override func viewDidLoad() {

 let fr: NSFetchRequest = NSFetchRequest(
 entityName: "Items")

 let context = NSManagedObjectContext(
 concurrencyType: .MainQueueConcurrencyType)

 do {

 let items: AnyObject = try context.executeFetchRequest(fr)
 if let displayItems = items as? [DisplayItem] {

 print(displayItems)
 }

 } catch let error as NSError {
 print(error.localizedDescription)
 }

 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 172

}

Section 33.2: Leveraging Protocol Oriented Programming for
Unit Testing
Protocol Oriented Programming is a useful tool in order to easily write better unit tests for our code.

Let's say we want to test a UIViewController that relies on a ViewModel class.

The needed steps on the production code are:

Define a protocol that exposes the public interface of the class ViewModel, with all the properties and1.
methods needed by the UIViewController.
Implement the real ViewModel class, conforming to that protocol.2.
Use a dependency injection technique to let the view controller use the implementation we want, passing it3.
as the protocol and not the concrete instance.

protocol ViewModelType {
 var title : String {get}
 func confirm()
}

class ViewModel : ViewModelType {
 let title : String

 init(title: String) {
 self.title = title
 }
 func confirm() { ... }
}

class ViewController : UIViewController {
 // We declare the viewModel property as an object conforming to the protocol
 // so we can swap the implementations without any friction.
 var viewModel : ViewModelType!
 @IBOutlet var titleLabel : UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 titleLabel.text = viewModel.title
 }

 @IBAction func didTapOnButton(sender: UIButton) {
 viewModel.confirm()
 }
}

// With DI we setup the view controller and assign the view model.
// The view controller doesn't know the concrete class of the view model,
// but just relies on the declared interface on the protocol.
let viewController = //... Instantiate view controller
viewController.viewModel = ViewModel(title: "MyTitle")

Then, on unit test:

Implement a mock ViewModel that conforms to the same protocol1.
Pass it to the UIViewController under test using dependency injection, instead of the real instance.2.
Test!3.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 173

class FakeViewModel : ViewModelType {
 let title : String = "FakeTitle"

 var didConfirm = false
 func confirm() {
 didConfirm = true
 }
}

class ViewControllerTest : XCTestCase {
 var sut : ViewController!
 var viewModel : FakeViewModel!

 override func setUp() {
 super.setUp()

 viewModel = FakeViewModel()
 sut = // ... initialization for view controller
 sut.viewModel = viewModel

 XCTAssertNotNil(self.sut.view) // Needed to trigger view loading
 }

 func testTitleLabel() {
 XCTAssertEqual(self.sut.titleLabel.text, "FakeTitle")
 }

 func testTapOnButton() {
 sut.didTapOnButton(UIButton())
 XCTAssertTrue(self.viewModel.didConfirm)
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 174

Chapter 34: Functional Programming in
Swift
Section 34.1: Extracting a list of names from a list of Person(s)
Given a Person struct

struct Person {
 let name: String
 let birthYear: Int?
}

and an Array of Person(s)

let persons = [
 Person(name: "Walter White", birthYear: 1959),
 Person(name: "Jesse Pinkman", birthYear: 1984),
 Person(name: "Skyler White", birthYear: 1970),
 Person(name: "Saul Goodman", birthYear: nil)
]

we can retrieve an array of String containing the name property of each Person.

let names = persons.map { $0.name }
// ["Walter White", "Jesse Pinkman", "Skyler White", "Saul Goodman"]

Section 34.2: Traversing
let numbers = [3, 1, 4, 1, 5]
// non-functional
for (index, element) in numbers.enumerate() {
 print(index, element)
}

// functional
numbers.enumerate().map { (index, element) in
 print((index, element))
}

Section 34.3: Filtering
Create a stream by selecting the elements from a stream that pass a certain condition is called filtering

var newReleases = [
 [
 "id": 70111470,
 "title": "Die Hard",
 "boxart": "http://cdn-0.nflximg.com/images/2891/DieHard.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": 4.0,
 "bookmark": []
],
 [
 "id": 654356453,
 "title": "Bad Boys",

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 175

 "boxart": "http://cdn-0.nflximg.com/images/2891/BadBoys.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": 5.0,
 "bookmark": [["id": 432534, "time": 65876586]]
],
 [
 "id": 65432445,
 "title": "The Chamber",
 "boxart": "http://cdn-0.nflximg.com/images/2891/TheChamber.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": 4.0,
 "bookmark": []
],
 [
 "id": 675465,
 "title": "Fracture",
 "boxart": "http://cdn-0.nflximg.com/images/2891/Fracture.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": 5.0,
 "bookmark": [["id": 432534, "time": 65876586]]
]
]

var videos1 = [[String: AnyObject]]()
/**
 * Filtering using map
 */
newReleases.map { e in
 if e["rating"] as! Float == 5.0 {
 videos1.append(["id": e["id"] as! Int, "title": e["title"] as! String])
 }
}

print(videos1)

var videos2 = [[String: AnyObject]]()
/**
 * Filtering using filter and chaining
 */
newReleases
 .filter{ e in
 e["rating"] as! Float == 5.0
 }
 .map { e in
 videos2.append(["id": e["id"] as! Int, "title": e["title"] as! String])
}

print(videos2)

Section 34.4: Using Filter with Structs
Frequently you may want to filter structures and other complex data types. Searching an array of structs for entries
that contain a particular value is a very common task, and easily achieved in Swift using functional programming
features. What's more, the code is extremely succinct.

struct Painter {
 enum Type { case Impressionist, Expressionist, Surrealist, Abstract, Pop }
 var firstName: String
 var lastName: String
 var type: Type

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 176

}

let painters = [
 Painter(firstName: "Claude", lastName: "Monet", type: .Impressionist),
 Painter(firstName: "Edgar", lastName: "Degas", type: .Impressionist),
 Painter(firstName: "Egon", lastName: "Schiele", type: .Expressionist),
 Painter(firstName: "George", lastName: "Grosz", type: .Expressionist),
 Painter(firstName: "Mark", lastName: "Rothko", type: .Abstract),
 Painter(firstName: "Jackson", lastName: "Pollock", type: .Abstract),
 Painter(firstName: "Pablo", lastName: "Picasso", type: .Surrealist),
 Painter(firstName: "Andy", lastName: "Warhol", type: .Pop)
]

// list the expressionists
dump(painters.filter({$0.type == .Expressionist}))

// count the expressionists
dump(painters.filter({$0.type == .Expressionist}).count)
// prints "2"

// combine filter and map for more complex operations, for example listing all
// non-impressionist and non-expressionists by surname
dump(painters.filter({$0.type != .Impressionist && $0.type != .Expressionist})
 .map({$0.lastName}).joinWithSeparator(", "))
// prints "Rothko, Pollock, Picasso, Warhol"

Section 34.5: Projecting
Applying a function to a collection/stream and creating a new collection/stream is called a projection.

/// Projection
var newReleases = [
 [
 "id": 70111470,
 "title": "Die Hard",
 "boxart": "http://cdn-0.nflximg.com/images/2891/DieHard.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": [4.0],
 "bookmark": []
],
 [
 "id": 654356453,
 "title": "Bad Boys",
 "boxart": "http://cdn-0.nflximg.com/images/2891/BadBoys.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": [5.0],
 "bookmark": [["id": 432534, "time": 65876586]]
],
 [
 "id": 65432445,
 "title": "The Chamber",
 "boxart": "http://cdn-0.nflximg.com/images/2891/TheChamber.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating": [4.0],
 "bookmark": []
],
 [
 "id": 675465,
 "title": "Fracture",
 "boxart": "http://cdn-0.nflximg.com/images/2891/Fracture.jpg",
 "uri": "http://api.netflix.com/catalog/titles/movies/70111470",

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 177

 "rating": [5.0],
 "bookmark": [["id": 432534, "time": 65876586]]
]
]

var videoAndTitlePairs = [[String: AnyObject]]()
newReleases.map { e in
 videoAndTitlePairs.append(["id": e["id"] as! Int, "title": e["title"] as! String])
}

print(videoAndTitlePairs)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 178

Chapter 35: Function as first class citizens
in Swift
Functions as First-class members means, it can enjoy privileges just like Objects does. It can be assigned to a
variable, passed on to a function as parameter or can be used as return type.

Section 35.1: Assigning function to a variable
struct Mathematics
{
 internal func performOperation(inputArray: [Int], operation: (Int)-> Int)-> [Int]
 {
 var processedArray = [Int]()

 for item in inputArray
 {
 processedArray.append(operation(item))
 }

 return processedArray
 }

 internal func performComplexOperation(valueOne: Int)-> ((Int)-> Int)
 {
 return
 ({
 return valueOne + $0
 })
 }

}

let arrayToBeProcessed = [1,3,5,7,9,11,8,6,4,2,100]

let math = Mathematics()

func add2(item: Int)-> Int
{
 return (item + 2)
}

// assigning the function to a variable and then passing it to a function as param
let add2ToMe = add2
print(math.performOperation(inputArray: arrayToBeProcessed, operation: add2ToMe))

Output:

[3, 5, 7, 9, 11, 13, 10, 8, 6, 4, 102]

Similarly the above could be achieved using a closure

// assigning the closure to a variable and then passing it to a function as param
let add2 = {(item: Int)-> Int in return item + 2}
print(math.performOperation(inputArray: arrayToBeProcessed, operation: add2))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 179

Section 35.2: Passing function as an argument to another
function, thus creating a Higher-Order Function
func multiply2(item: Int)-> Int
{
 return (item + 2)
}

let multiply2ToMe = multiply2

// passing the function directly to the function as param
print(math.performOperation(inputArray: arrayToBeProcessed, operation: multiply2ToMe))

Output:

[3, 5, 7, 9, 11, 13, 10, 8, 6, 4, 102]

Similarly the above could be achieved using a closure

// passing the closure directly to the function as param
print(math.performOperation(inputArray: arrayToBeProcessed, operation: { $0 * 2 }))

Section 35.3: Function as return type from another function
// function as return type
print(math.performComplexOperation(valueOne: 4)(5))

Output:

9

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 180

Chapter 36: Blocks
From Swift Documentarion

A closure is said to escape a function when the closure is passed as an argument to the function, but is called after
the function returns. When you declare a function that takes a closure as one of its parameters, you can write
@escaping before the parameter’s type to indicate that the closure is allowed to escape.

Section 36.1: Non-escaping closure
In Swift 1 and 2, closure parameters were escaping by default. If you knew your closure wouldn’t escape the
function body, you could mark the parameter with the @noescape attribute.

In Swift 3, it’s the other way around: closure parameters are non-escaping by default. If you intend for it to escape
the function, you have to mark it with the @escaping attribute.

class ClassOne {
 // @noescape is applied here as default
 func methodOne(completion: () -> Void) {
 //
 }
}

class ClassTwo {
 let obj = ClassOne()
 var greeting = "Hello, World!"

 func methodTwo() {
 obj.methodOne() {
 // self.greeting is required
 print(greeting)
 }
 }
}

Section 36.2: Escaping closure
From Swift Documentarion

@escaping

Apply this attribute to a parameter’s type in a method or function declaration to indicate that the
parameter’s value can be stored for later execution. This means that the value is allowed to outlive the
lifetime of the call. Function type parameters with the escaping type attribute require explicit use of self.
for properties or methods.

class ClassThree {

 var closure: (() -> ())?

 func doSomething(completion: @escaping () -> ()) {
 closure = finishBlock
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 181

}

In the above example the completion block is saved to closure and will literally live beyond the function call. So
complier will force to mark completion block as @escaping.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 182

Chapter 37: The Defer Statement
Section 37.1: When to use a defer statement
A defer statement consists of a block of code, which will be executed when a function returns and should be used
for cleanup.

As Swift's guard statements encourage a style of early return, many possible paths for a return may exist. A defer
statement provides cleanup code, which then does not need to be repeated every time.

It can also save time during debugging and profiling, as memory leaks and unused open resources due to forgotten
cleanup can be avoided.

It can be used to deallocate a buffer at the end of a function:

func doSomething() {
 let data = UnsafeMutablePointer<UInt8>(allocatingCapacity: 42)
 // this pointer would not be released when the function returns
 // so we add a defer-statement
 defer {
 data.deallocateCapacity(42)
 }
 // it will be executed when the function returns.

 guard condition else {
 return /* will execute defer-block */
 }

} // The defer-block will also be executed on the end of the function.

It can also be used to close resources at the end of a function:

func write(data: UnsafePointer<UInt8>, dataLength: Int) throws {
 var stream:NSOutputStream = getOutputStream()
 defer {
 stream.close()
 }

 let written = stream.write(data, maxLength: dataLength)
 guard written >= 0 else {
 throw stream.streamError! /* will execute defer-block */
 }

} // the defer-block will also be executed on the end of the function

Section 37.2: When NOT to use a defer statement
When using a defer-statement, make sure the code remains readable and the execution order remains clear. For
example, the following use of the defer-statement makes the execution order and the function of the code hard to
comprehend.

postfix func ++ (inout value: Int) -> Int {
 defer { value += 1 } // do NOT do this!
 return value
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 183

Chapter 38: Style Conventions
Section 38.1: Fluent Usage
Using natural language
Functions calls should be close to natural English language.

Example:

list.insert(element, at: index)

instead of

list.insert(element, position: index)

Naming Factory Methods
Factory methods should begin with the prefix `make`.

Example:

factory.makeObject()

Naming Parameters in Initializers and Factory Methods
The name of the first argument should not be involved in naming a factory method or initializer.

Example:

factory.makeObject(key: value)

Instead of:

factory.makeObject(havingProperty: value)

Naming according to side effects

Functions with side effects (mutating functions) should be named using verbs or nouns prefixed with form- .
Functions without side effects (nonmutating functions) should be named using nouns or verbs with the suffix
-ing or -ed.

Example: Mutating functions:

print(value)
array.sort() // in place sorting
list.add(value) // mutates list
set.formUnion(anotherSet) // set is now the union of set and anotherSet

Nonmutating functions:

let sortedArray = array.sorted() // out of place sorting
let union = set.union(anotherSet) // union is now the union of set and another set

Boolean functions or variables
Statements involving booleans should read as assertions.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 184

Example:

set.isEmpty
line.intersects(anotherLine)

Naming Protocols

Protocols describing what something is should be named using nouns.
Protocols describing capabilities should have -able, -ible or -ing as suffix.

Example:

Collection // describes that something is a collection
ProgressReporting // describes that something has the capability of reporting progress
Equatable // describes that something has the capability of being equal to something

Types and Properties
Types, variables and properties should read as nouns.

Example:

let factory = ...
let list = [1, 2, 3, 4]

Section 38.2: Clear Usage
Avoid Ambiguity
The name of classes, structures, functions and variables should avoid ambiguity.

Example:

extension List {
 public mutating func remove(at position: Index) -> Element {
 // implementation
 }
}

The function call to this function will then look like this:

list.remove(at: 42)

This way, ambiguity is avoided. If the function call would be just list.remove(42) it would be unclear, if an Element
equal to 42 would be removed or if the Element at Index 42 would be removed.

Avoid Redundancy
The name of functions should not contain redundant information.

A bad example would be:

extension List {
 public mutating func removeElement(element: Element) -> Element? {
 // implementation
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 185

A call to the function may look like list.removeElement(someObject). The variable someObject already indicates,
that an Element is removed. It would be better for the function signature to look like this:

extension List {
 public mutating func remove(_ member: Element) -> Element? {
 // implementation
 }
}

The call to this function looks like this: list.remove(someObject).

Naming variables according to their role
Variables should be named by their role (e.g. supplier, greeting) instead of their type (e.g. factory, string, etc..)

High coupling between Protocol Name and Variable Names
If the name of the type describes its role in most cases (e.g. Iterator), the type should be named with the suffix
`Type`. (e.g. IteratorType)
Provide additional details when using weakly typed parameters
If the type of an object does not indicate its usage in a function call clearly, the function should be named with a
preceding noun for every weakly typed parameter, describing its usage.
Example:

func addObserver(_ observer: NSObject, forKeyPath path: String)

to which a call would look like `object.addObserver(self, forKeyPath: path)

instead of

func add(_ observer: NSObject, for keyPath: String)

to which a call would look like object.add(self, for: path)

Section 38.3: Capitalization
Types & Protocols

Type and protocol names should start with an uppercase letter.

Example:

protocol Collection {}
struct String {}
class UIView {}
struct Int {}
enum Color {}

Everything else...

Variables, constants, functions and enumeration cases should start with a lowercase letter.

Example:

let greeting = "Hello"
let height = 42.0

enum Color {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 186

 case red
 case green
 case blue
}

func print(_ string: String) {
 ...
}

Camel Case:

All naming should use the appropriate camel case. Upper camel case for type/protocol names and lower camel
case for everything else.

Upper Camel Case:

protocol IteratorType { ... }

Lower Camel Case:

let inputView = ...

Abbreviations

Abbreviations should be avoided unless commonly used (e.g. URL, ID). If an abbreviation is used, all letters should
have the same case.

Example:

let userID: UserID = ...
let urlString: URLString = ...

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 187

Chapter 39: NSRegularExpression in Swift
Section 39.1: Extending String to do simple pattern matching
extension String {
 func matchesPattern(pattern: String) -> Bool {
 do {
 let regex = try NSRegularExpression(pattern: pattern,
 options: NSRegularExpressionOptions(rawValue: 0))
 let range: NSRange = NSMakeRange(0, self.characters.count)
 let matches = regex.matchesInString(self, options: NSMatchingOptions(), range: range)
 return matches.count > 0
 } catch _ {
 return false
 }
 }
}

// very basic examples - check for specific strings
dump("Pinkman".matchesPattern("(White|Pinkman|Goodman|Schrader|Fring)"))

// using character groups to check for similar-sounding impressionist painters
dump("Monet".matchesPattern("(M[oa]net)"))
dump("Manet".matchesPattern("(M[oa]net)"))
dump("Money".matchesPattern("(M[oa]net)")) // false

// check surname is in list
dump("Skyler White".matchesPattern("\\\\w+ (White|Pinkman|Goodman|Schrader|Fring)"))

// check if string looks like a UK stock ticker
dump("VOD.L".matchesPattern("[A-Z]{2,3}\\\\.L"))
dump("BP.L".matchesPattern("[A-Z]{2,3}\\\\.L"))

// check entire string is printable ASCII characters
dump("tab\\tformatted text".matchesPattern("^[\\u{0020}-\\u{007e}]*$"))

// Unicode example: check if string contains a playing card suit
dump("♠�".matchesPattern("[\\u{2660}-\\u{2667}]"))
dump("♡".matchesPattern("[\\u{2660}-\\u{2667}]"))
dump("�".matchesPattern("[\\u{2660}-\\u{2667}]")) // false

// NOTE: regex needs Unicode-escaped characters
dump("♣�".matchesPattern("♣�")) // does NOT work

Below is another example which builds on the above to do something useful, which can't easily be done by any
other method and lends itself well to a regex solution.

// Pattern validation for a UK postcode.
// This simply checks that the format looks like a valid UK postcode and should not fail on false
positives.
private func isPostcodeValid(postcode: String) -> Bool {
 return postcode.matchesPattern("^[A-Z]{1,2}([0-9][A-Z]|[0-9]{1,2})\\\\s[0-9][A-Z]{2}")
}

// valid patterns (from https://en.wikipedia.org/wiki/Postcodes_in_the_United_Kingdom#Validation)
// will return true
dump(isPostcodeValid("EC1A 1BB"))
dump(isPostcodeValid("W1A 0AX"))
dump(isPostcodeValid("M1 1AE"))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 188

dump(isPostcodeValid("B33 8TH"))
dump(isPostcodeValid("CR2 6XH"))
dump(isPostcodeValid("DN55 1PT"))

// some invalid patterns
// will return false
dump(isPostcodeValid("EC12A 1BB"))
dump(isPostcodeValid("CRB1 6XH"))
dump(isPostcodeValid("CR 6XH"))

Section 39.2: Basic Usage
There are several considerations when implementing Regular Expressions in Swift.

let letters = "abcdefg"
let pattern = "[a,b,c]"
let regEx = try NSRegularExpression(pattern: pattern, options: [])
let nsString = letters as NSString
let matches = regEx.matches(in: letters, options: [], range: NSMakeRange(0, nsString.length))
let output = matches.map {nsString.substring(with: $0.range)}
//output = ["a", "b", "c"]

In order to get an accurate range length that supports all character types the input string must be converted to a
NSString.

For safety matching against a pattern should be enclosed in a do catch block to handle failure

let numbers = "121314"
let pattern = "1[2,3]"
do {
 let regEx = try NSRegularExpression(pattern: pattern, options: [])
 let nsString = numbers as NSString
 let matches = regEx.matches(in: numbers, options: [], range: NSMakeRange(0, nsString.length))
 let output = matches.map {nsString.substring(with: $0.range)}
 output
} catch let error as NSError {
 print("Matching failed")
}
//output = ["12", "13"]

Regular expression functionality is often put in an extension or helper to separate concerns.

Section 39.3: Replacing Substrings
Patterns can be used to replace part of an input string.

The example below replaces the cent symbol with the dollar symbol.

var money = "¢¥€£$¥€£¢"
let pattern = "¢"
do {
 let regEx = try NSRegularExpression (pattern: pattern, options: [])
 let nsString = money as NSString
 let range = NSMakeRange(0, nsString.length)
 let correct$ = regEx.stringByReplacingMatches(in: money, options: .withTransparentBounds,
range: range, withTemplate: "$")
} catch let error as NSError {
 print("Matching failed")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 189

}
//correct$ = "$¥€£$¥€£$"

Section 39.4: Special Characters
To match special characters Double Backslash should be used \. becomes \\.

Characters you'll have to escape include

(){}[]/\+*$>.|^?

The below example get three kinds of opening brackets

let specials = "(){}[]"
let pattern = "(\\(|\\{|\\[)"
do {
 let regEx = try NSRegularExpression(pattern: pattern, options: [])
 let nsString = specials as NSString
 let matches = regEx.matches(in: specials, options: [], range: NSMakeRange(0, nsString.length))
 let output = matches.map {nsString.substring(with: $0.range)}
} catch let error as NSError {
 print("Matching failed")
}
//output = ["(", "{", "["]

Section 39.5: Validation
Regular expressions can be used to validate inputs by counting the number of matches.

var validDate = false

let numbers = "35/12/2016"
let usPattern = "^(0[1-9]|1[012])[-/.](0[1-9]|[12][0-9]|3[01])[-/.](19|20)\\d\\d$"
let ukPattern = "^(0[1-9]|[12][0-9]|3[01])[-/](0[1-9]|1[012])[-/](19|20)\\d\\d$"
do {
 let regEx = try NSRegularExpression(pattern: ukPattern, options: [])
 let nsString = numbers as NSString
 let matches = regEx.matches(in: numbers, options: [], range: NSMakeRange(0, nsString.length))

 if matches.count > 0 {
 validDate = true
 }

 validDate

} catch let error as NSError {
 print("Matching failed")
}
//output = false

Section 39.6: NSRegularExpression for mail validation
func isValidEmail(email: String) -> Bool {

 let emailRegEx = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"

 let emailTest = NSPredicate(format:"SELF MATCHES %@", emailRegEx)
 return emailTest.evaluate(with: email)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 190

}

or you could use String extension like this:

extension String
{
 func isValidEmail() -> Bool {

 let emailRegEx = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"

 let emailTest = NSPredicate(format:"SELF MATCHES %@", emailRegEx)
 return emailTest.evaluate(with: self)
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 191

Chapter 40: RxSwift
Section 40.1: Disposing
After the subscription was created, it is important to manage its correct deallocation.

The docs told us that

If a sequence terminates in finite time, not calling dispose or not using addDisposableTo(disposeBag)
won't cause any permanent resource leaks. However, those resources will be used until the sequence
completes, either by finishing production of elements or returning an error.

There are two ways of deallocate resources.

Using disposeBags and addDisposableTo operator.1.
Using takeUntil operator.2.

In the first case you manually pass the subscription to the DisposeBag object, which correctly clears all taken
memory.

let bag = DisposeBag()
Observable.just(1).subscribeNext {
 print($0)
}.addDisposableTo(bag)

You don't actually need to create DisposeBags in every class that you create, just take a look at RxSwift Community's
project named NSObject+Rx. Using the framework the code above can be rewritten as follows:

Observable.just(1).subscribeNext {
 print($0)
}.addDisposableTo(rx_disposeBag)

In the second case, if the subscription time coincides with the self object lifetime, it is possible to implement
disposing using takeUntil(rx_deallocated):

let _ = sequence
 .takeUntil(rx_deallocated)
 .subscribe {
 print($0)
 }

Section 40.2: RxSwift basics
FRP, or Functional Reactive Programming, has some basic terms which you need to know.

Every piece of data can be represented as Observable, which is an asynchronous data stream. The power of FRP is
in representation synchronous and asynchronous events as streams, Observables, and providing the same
interface to work with it.

Usually Observable holds several (or none) events that holds the date - .Next events, and then it can be terminated
successfully (.Success) or with an error (.Error).

Let's take a look at following marble diagram:

https://github.com/RxSwiftCommunity/NSObject-Rx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 192

--(1)--(2)--(3)|-->

In this example there is a stream of Int values. As time moves forward, three .Next events occurred, and then the
stream terminated successfully.

--X->

The diagram above shows a case where no data was emitted and .Error event terminates the Observable.

Before we move on, there are some useful resources:

RxSwift. Look at examples, read docs and getting started.1.
RxSwift Slack room has a few channels for education problem solving.2.
Play around with RxMarbles to know what operator does, and which is the most useful in your case.3.
Take a look on this example, explore the code by yourself.4.

Section 40.3: Creating observables
RxSwift offers many ways to create an Observable, let's take a look:

import RxSwift

let intObservale = Observable.just(123) // Observable<Int>
let stringObservale = Observable.just("RxSwift") // Observable<String>
let doubleObservale = Observable.just(3.14) // Observable<Double>

So, the observables are created. They holds just one value and then terminates with success. Nevertheless, nothing
happening after it was created. Why?

There are two steps in working with Observables: you observe something to create a stream and then you
subscribe to the stream or bind it to something to interact with it.

Observable.just(12).subscribe {
 print($0)
}

The console will print:

.Next(12)

.Completed()

And if I interested only in working with data, which take place in .Next events, I'd use subscribeNext operator:

Observable.just(12).subscribeNext {
 print($0) // prints "12" now
}

If I want create an observable of many values, I use different operators:

Observable.of(1,2,3,4,5).subscribeNext {
 print($0)
}
// 1
// 2

https://github.com/ReactiveX/RxSwift
http://rxswift.slack.com
http://rxmarbles.com/
https://github.com/scotteg/RxSwiftPlayer
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 193

// 3
// 4
// 5

// I can represent existing data types as Observables also:
[1,2,3,4,5].asObservable().subscribeNext {
 print($0)
}
// result is the same as before.

And finally, maybe I want an Observable that does some work. For example, it is convenient to wrap a network
operation into Observable<SomeResultType>. Let's take a look of do one can achieve this:

Observable.create { observer in // create an Observable ...
 MyNetworkService.doSomeWorkWithCompletion { (result, error) in
 if let e = error {
 observer.onError(e) // ..that either holds an error
 } else {
 observer.onNext(result) // ..or emits the data
 observer.onCompleted() // ..and terminates successfully.
 }
 }
 return NopDisposable.instance // here you can manually free any resources
 //in case if this observable is being disposed.
}

Section 40.4: Bindings
Observable.combineLatest(firstName.rx_text, lastName.rx_text) { $0 + " " + $1 }
.map { "Greetings, \($0)" }
.bindTo(greetingLabel.rx_text)

Using the combineLatest operator every time an item is emitted by either of two Observables, combine the latest
item emitted by each Observable. So in this way we combine the result of the two UITextField's creating a new
message with the text "Greetings, \($0)" using string interpolation to later bind to the text of a UILabel.

We can bind data to any UITableView and UICollectionView in an very easy way:

viewModel
.rows
.bindTo(resultsTableView.rx_itemsWithCellIdentifier("WikipediaSearchCell", cellType:
WikipediaSearchCell.self)) { (_, viewModel, cell) in
 cell.title = viewModel.title
 cell.url = viewModel.url
}
.addDisposableTo(disposeBag)

That’s an Rx wrapper around the cellForRowAtIndexPath data source method. And also Rx takes care of the
implementation of the numberOfRowsAtIndexPath, which is a required method in a traditional sense, but you don’t
have to implement it here, it’s taken care of.

Section 40.5: RxCocoa and ControlEvents
RxSwift provides not only the ways to control your data, but to represent user actions in a reactive way also.

RxCocoa contains everything you need. It wraps most of the UI components' properties into Observables, but not
really. There are some upgraded Observables called ControlEvents (which represent events) and

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 194

ControlProperties (which represent properties, surprise!). These things holds Observable streams under the
hood, but also have some nuances:

It never fails, so no errors.
It will Complete sequence on control being deallocated.
It delivers events on the main thread (MainScheduler.instance).

Basically, you can work with them as usual:

button.rx_tap.subscribeNext { _ in // control event
 print("User tapped the button!")
}.addDisposableTo(bag)

textField.rx_text.subscribeNext { text in // control property
 print("The textfield contains: \(text)")
}.addDisposableTo(bag)
// notice that ControlProperty generates .Next event on subscription
// In this case, the log will display
// "The textfield contains: "
// at the very start of the app.

This is very important to use: as long as you use Rx, forget about the @IBAction stuff, everything you need you can
bind and configure at once. For example, viewDidLoad method of your view controller is a good candidate to
describe how the UI-components work.

Ok, another example: suppose we have a textfield, a button, and a label. We want to validate text in the textfield
when we tap the button, and display the results in the label. Yep, seems like an another validate-email task, huh?

First of all, we grab the button.rx_tap ControlEvent:

----()-----------------------()----->

Here empty parenthesis show user taps. Next, we take what's written in the textField with withLatestFrom operator
(take a look at it here, imagine that upper stream represents user taps, bottom one represents text in the text field).

button.rx_tap.withLatestFrom(textField.rx_text)

----("")--------------------("123")--->
// ^ tap ^ i wrote 123 ^ tap

Nice, we have a stream of strings to validate, emitted only when we need to validate.

Any Observable has such familiar operators as map or filter, we'll take map to validate the text. Create
validateEmail function yourself, use any regex you want.

button.rx_tap // ControlEvent<Void>
 .withLatestFrom(textField.rx_text) // Observable<String>
 .map(validateEmail) // Observable<Bool>
 .map { (isCorrect) in
 return isCorrect ? "Email is correct" : "Input the correct one, please"
 } // Observable<String>
 .bindTo(label.rx_text)
 .addDisposableTo(bag)

Done! If you need more custom logic (like showing error views in case of error, making a transition to another

http://rxmarbles.com/#withLatestFrom
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 195

screen on success...), just subscribe to the final Bool stream and write it there.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 196

Chapter 41: Swift Package Manager
Section 41.1: Creation and usage of a simple Swift package
To create a Swift Package, open a Terminal then create an empty folder:

mkdir AwesomeProject cd AwesomeProject

And init a Git repository:

git init

Then create the package itself. One could create the package structure manually but there's a simple way using the
CLI command.

If you want to make an executable:

swift package init --type executable

Several files will be generated. Among them, main.swift will be the entry point for your application.

If you want to make a library:

swift package init --type library

The generated AwesomeProject.swift file will be used as the main file for this library.

In both cases you can add other Swift files in the Sources folder (usual rules for access control apply).

The Package.swift file itself will be automatically populated with this content:

import PackageDescription

let package = Package(
 name: "AwesomeProject"
)

Versioning the package is done with Git tags:

git tag '1.0.0'

Once pushed to a remote or local Git repository, your package will be available to other projects.

Your package is now ready to be compiled:

swift build

The compiled project will be available in the .build/debug folder.

Your own package can also resolve dependencies to other packages. For example, if you want to include
"SomeOtherPackage" in your own project, change your Package.swift file to include the dependency:

import PackageDescription

let package = Package(
 name: "AwesomeProject",
 targets: [],

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 197

 dependencies: [
 .Package(url: "https://github.com/someUser/SomeOtherPackage.git",
 majorVersion: 1),
]
)

Then build your project again: the Swift Package Manager will automatically resolve, download and build the
dependencies.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 198

Chapter 42: Working with C and Objective-
C
Section 42.1: Use a module map to import C headers
A module map can simply import mymodule by configuring it to read C header files and make them appear as Swift
functions.

Place a file named module.modulemap inside a directory named mymodule:

Inside the module map file:

// mymodule/module.modulemap
module mymodule {
 header "defs.h"
}

Then import the module:

// demo.swift
import mymodule
print("Empty color: \(Color())")

Use the -I ctory flag to tell swiftc where to find the module:

swiftc -I . demo.swift # "-I ." means "search for modules in the current directory"

For more information about the module map syntax, see the Clang documentation about module maps.

Section 42.2: Using Objective-C classes from Swift code
If MyFramework contains Objective-C classes in its public headers (and the umbrella header), then import
MyFramework is all that's necessary to use them from Swift.

Bridging headers

A bridging header makes additional Objective-C and C declarations visible to Swift code. When adding project files,
Xcode may offer to create a bridging header automatically:

http://clang.llvm.org/docs/Modules.html#module-maps
http://clang.llvm.org/docs/Modules.html#module-map-language
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 199

To create one manually, modify the Objective-C Bridging Header build setting:

Inside the bridging header, import whichever files are necessary to use from code:

// MyApp-Bridging-Header.h
#import "MyClass.h" // allows code in this module to use MyClass

Generated Interface

Click the Related Items button (or press ⌃1), then select Generated Interface to see the Swift interface that will be
generated from an Objective-C header.

https://i.stack.imgur.com/MjsyZ.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 200

Section 42.3: Specify a bridging header to swiftc
The -import-objc-header flag specifies a header for swiftc to import:

// defs.h
struct Color {
 int red, green, blue;
};

#define MAX_VALUE 255

// demo.swift
extension Color: CustomStringConvertible { // extension on a C struct
 public var description: String {
 return "Color(red: \(red), green: \(green), blue: \(blue))"
 }
}
print("MAX_VALUE is: \(MAX_VALUE)") // C macro becomes a constant
let color = Color(red: 0xCA, green: 0xCA, blue: 0xD0) // C struct initializer
print("The color is \(color)")

$ swiftc demo.swift -import-objc-header defs.h && ./demo MAX_VALUE is: 255 The color is Color(red: 202, green:
202, blue: 208)

Section 42.4: Use the C standard library
Swift's C interoperability allows you to use functions and types from the C standard library.

On Linux, the C standard library is exposed via the Glibc module; on Apple platforms it's called Darwin.

#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
import Darwin
#elseif os(Linux)
import Glibc
#endif

// use open(), read(), and other libc features

Section 42.5: Fine-grained interoperation between Objective-
C and Swift
When an API is marked with NS_REFINED_FOR_SWIFT, it will be prefixed with two underscores (__) when imported to
Swift:

@interface MyClass : NSObject
- (NSInteger)indexOfObject:(id)obj

EFINED_FOR_SWIFT; @end

The generated interface looks like this:

public class MyClass : NSObject {
 public func

dexOfObject(obj: AnyObject) -> Int }

Now you can replace the API with a more "Swifty" extension. In this case, we can use an optional return value,
filtering out NSNotFound:

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/#//apple_ref/doc/constant_group/NSNotFound
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 201

extension MyClass {
 // Rather than returning NSNotFound if the object doesn't exist,
 // this "refined" API returns nil.
 func

xOfObject(obj: AnyObject) -> Int? { let idx = __indexOfObject(obj) if idx == NSNotFound { return nil } return idx } } //
Swift code, using "if let" as it should be: let myobj = MyClass() if let idx = myobj.indexOfObject(something) { // do
something with idx }

In most cases you might want to restrict whether or not an argument to an Objective-C function could be nil. This
is done using _Nonnull keyword, which qualifies any pointer or block reference:

void
doStuff(const void *const _Nonnull data, void (^_Nonnull completion)())
{
 // complex asynchronous code
}

With that written, the compiler shall emit an error whenever we try to pass nil to that function from our Swift code:

doStuff(
 nil, // error: nil is not compatible with expected argument type 'UnsafeRawPointer'
 nil) // error: nil is not compatible with expected argument type '() -> Void'

The opposite of _Nonnull is _Nullable, which means that it is acceptable to pass nil in this argument. _Nullable is
also the default; however, specifying it explicitly allows for more self-documented and future-proof code.

To further help the compiler with optimising your code, you also might want to specify if the block is escaping:

void
callNow(__attribute__((noescape)) void (^_Nonnull f)())
{
 // f is not stored anywhere
}

With this attribute we promise not to save the block reference and not to call the block after the function has
finished execution.

Section 42.6: Using Swift classes from Objective-C code
In the same module

Inside a module named "MyModule", Xcode generates a header named MyModule-Swift.h which exposes public
Swift classes to Objective-C. Import this header in order to use the Swift classes:

// MySwiftClass.swift in MyApp
import Foundation

// The class must be `public` to be visible, unless this target also has a bridging header

ic class MySwiftClass: NSObject { // ... }

// MyViewController.m in MyApp

#import "MyViewController.h"

ort "MyApp-Swift.h" // import the generated interface #import <MyFramework/MyFramework-Swift.h> // or use
angle brackets for a framework target @implementation MyViewController - (void)demo { [[MySwiftClass alloc] init];
// use the Swift class } @end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 202

Relevant build settings:

Objective-C Generated Interface Header Name: controls the name of the generated Obj-C header.
Install Objective-C Compatibility Header: whether the -Swift.h header should be a public header (for
framework targets).

In another module

Using @import MyFramework; imports the whole module, including Obj-C interfaces to Swift classes (if the
aforementioned build setting is enabled).

http://i.stack.imgur.com/gpEa5.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 203

Chapter 43: Documentation markup
Section 43.1: Class documentation
Here is a basic class documentation example:

/// Class description
class Student {

 // Member description
 var name: String

 /// Method description
 ///
 /// - parameter content: parameter description
 ///
 /// - returns: return value description
 func say(content: String) -> Bool {
 print("\(self.name) say \(content)")
 return true
 }
}

Note that with Xcode 8, you can generate the documentation snippet with command + option + / .

This will return:

Section 43.2: Documentation styles
/**
 Adds user to the list of poople which are assigned the tasks.

 - Parameter name: The name to add
 - Returns: A boolean value (true/false) to tell if user is added successfully to the people list.
*/
func addMeToList(name: String) -> Bool {

 // Do something....

 return true
}

http://i.stack.imgur.com/kPt3z.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 204

/// This is a single line comment
func singleLineComment() {

}

/**
 Repeats a string `times` times.

 - Parameter str: The string to repeat.
 - Parameter times: The number of times to repeat `str`.

 - Throws: `MyError.InvalidTimes` if the `times` parameter
 is less than zero.

 - Returns: A new string with `str` repeated `times` times.
*/
func repeatString(str: String, times: Int) throws -> String {
 guard times >= 0 else { throw MyError.invalidTimes }
 return "Hello, world"
}

https://i.stack.imgur.com/tsfA7.png
https://i.stack.imgur.com/SzpCE.png
https://i.stack.imgur.com/GLrTl.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 205

/**
 # Lists

 You can apply *italic*, **bold**, or `code` inline styles.

 ## Unordered Lists
 - Lists are great,
 - but perhaps don't nest
 - Sub-list formatting
 - isn't the best.

 ## Ordered Lists
 1. Ordered lists, too
 2. for things that are sorted;
 3. Arabic numerals
 4. are the only kind supported.
*/
func complexDocumentation() {

}

/**
 Frame and construction style.

 - Road: For streets or trails.
 - Touring: For long journeys.
 - Cruiser: For casual trips around town.
 - Hybrid: For general-purpose transportation.
*/
enum Style {
 case Road, Touring, Cruiser, Hybrid

https://i.stack.imgur.com/8yhkl.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 206

}

https://i.stack.imgur.com/cQzyn.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 207

Chapter 44: Typealias
Section 44.1: typealias for closures with parameters
typealias SuccessHandler = (NSURLSessionDataTask, AnyObject?) -> Void

This code block creates a type alias named SuccessHandler, just in the same way var string = "" creates a
variable with the name string.

Now whenever you use SuccessHandler, for example:

func example(_ handler: SuccessHandler) {}

You are essentilly writing:

func example(_ handler: (NSURLSessionDataTask, AnyObject?) -> Void) {}

Section 44.2: typealias for empty closures
typealias Handler = () -> Void
typealias Handler = () -> ()

This block creates a type alias that works as a Void to Void function (takes in no parameters and returns nothing).

Here is a usage example:

var func: Handler?

func = {}

Section 44.3: typealias for other types
typealias Number = NSNumber

You can also use a type alias to give a type another name to make it easier to remember, or make your code more
elegant.

typealias for Tuples

typealias PersonTuple = (name: String, age: Int, address: String)

And this can be used as:

func getPerson(for name: String) -> PersonTuple {
 //fetch from db, etc
 return ("name", 45, "address")
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 208

Chapter 45: Dependency Injection
Section 45.1: Dependency Injection with View Controllers
Dependenct Injection Intro

An application is composed of many objects that collaborate with each other. Objects usually depend on other
objects to perform some task. When an object is responsible for referencing its own dependencies it leads to a
highly coupled, hard-to-test and hard-to-change code.

Dependency injection is a software design pattern that implements inversion of control for resolving dependencies.
An injection is passing of dependency to a dependent object that would use it. This allows a separation of client's
dependencies from the client's behaviour, which allows the application to be loosely coupled.

Not to be confused with the above definition - a dependency injection simply means giving an object its
instance variables.

It's that simple, but it provides a lot of benefits:

easier to test your code (using automated tests like unit and UI tests)
when used in tandem with protocol-oriented programming it makes it easy to change the implementation of
a certain class - easier to refactor
it makes the code more modular and reusable

There are three most commonly used ways Dependency Injection (DI) can be implemented in an application:

Initializer injection1.
Property injection2.
Using third party DI frameworks (like Swinject, Cleanse, Dip or Typhoon)3.

There is an interesting article with links to more articles about Dependency Injection so check it out if you want to
dig deeper into DI and Inversion of Control principle.

Let's show how to use DI with View Controllers - an every day task for an average iOS developer.

Example Without DI

We'll have two View Controllers: LoginViewController and TimelineViewController. LoginViewController is used
to login and upon successful loign, it will switch to the TimelineViewController. Both view controllers are dependent
on the FirebaseNetworkService.

LoginViewController

class LoginViewController: UIViewController {

 var networkService = FirebaseNetworkService()

 override func viewDidLoad() {
 super.viewDidLoad()
 }
}

TimelineViewController

class TimelineViewController: UIViewController {

http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 209

 var networkService = FirebaseNetworkService()

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 @IBAction func logoutButtonPressed(_ sender: UIButton) {
 networkService.logutCurrentUser()
 }
}

FirebaseNetworkService

class FirebaseNetworkService {

 func loginUser(username: String, passwordHash: String) {
 // Implementation not important for this example
 }

 func logutCurrentUser() {
 // Implementation not important for this example
 }
}

This example is very simple, but let's assume you have 10 or 15 different view controller and some of them are also
dependent on the FirebaseNetworkService. At some moment you want to change Firebase as your backend service
with your company's in-house backend service. To do that you'll have to go through every view controller and
change FirebaseNetworkService with CompanyNetworkService. And if some of the methods in the
CompanyNetworkService have changed, you'll have a lot of work to do.

Unit and UI testing is not the scope of this example, but if you wanted to unit test view controllers with tightly
coupled dependencies, you would have a really hard time doing so.

Let's rewrite this example and inject Network Service to our view controllers.

Example with Dependancy Injection

To make the best out of the Dependency Injection, let's define the functionality of the Network Service in a protocol.
This way, view controllers dependent on a network service won't even have to know about the real implementation
of it.

protocol NetworkService {
 func loginUser(username: String, passwordHash: String)
 func logutCurrentUser()
}

Add an implementation of the NetworkService protocol:

class FirebaseNetworkServiceImpl: NetworkService {
 func loginUser(username: String, passwordHash: String) {
 // Firebase implementation
 }

 func logutCurrentUser() {
 // Firebase implementation
 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 210

Let's change LoginViewController and TimelineViewController to use new NetworkService protocol instead of
FirebaseNetworkService.

LoginViewController

class LoginViewController: UIViewController {

 // No need to initialize it here since an implementation
 // of the NetworkService protocol will be injected
 var networkService: NetworkService?

 override func viewDidLoad() {
 super.viewDidLoad()
 }
}

TimelineViewController

class TimelineViewController: UIViewController {

 var networkService: NetworkService?

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 @IBAction func logoutButtonPressed(_ sender: UIButton) {
 networkService?.logutCurrentUser()
 }
}

Now, the question is: How do we inject the correct NetworkService implementation in the LoginViewController and
TimelineViewController?

Since LoginViewController is the starting view controller and will show every time the application starts, we can
inject all dependencies in the AppDelegate.

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // This logic will be different based on your project's structure or whether
 // you have a navigation controller or tab bar controller for your starting view controller
 if let loginVC = window?.rootViewController as? LoginViewController {
 loginVC.networkService = FirebaseNetworkServiceImpl()
 }
 return true
}

In the AppDelegate we are simply taking the reference to the first view controller (LoginViewController) and
injecting the NetworkService implementation using the property injection method.

Now, the next task is to inject the NetworkService implementation in the TimelineViewController. The easiest way is
to do that when LoginViewController is transitioning to the TimlineViewController.

We'll add the injection code in the prepareForSegue method in the LoginViewController (if you are using a different
approach to navigate through view controllers, place the injection code there).

Our LoginViewController class looks like this now:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 211

class LoginViewController: UIViewController {
 // No need to initialize it here since an implementation
 // of the NetworkService protocol will be injected
 var networkService: NetworkService?

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "TimelineViewController" {
 if let timelineVC = segue.destination as? TimelineViewController {
 // Injecting the NetworkService implementation
 timelineVC.networkService = networkService
 }
 }
 }
}

We are done and it's that easy.

Now imagine we want to switch our NetworkService implementation from Firebase to our custom company's
backend implementation. All we would have to do is:

Add new NetworkService implementation class:

class CompanyNetworkServiceImpl: NetworkService {
 func loginUser(username: String, passwordHash: String) {
 // Company API implementation
 }

 func logutCurrentUser() {
 // Company API implementation
 }
}

Switch the FirebaseNetworkServiceImpl with the new implementation in the AppDelegate:

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // This logic will be different based on your project's structure or whether
 // you have a navigation controller or tab bar controller for your starting view controller
 if let loginVC = window?.rootViewController as? LoginViewController {
 loginVC.networkService = CompanyNetworkServiceImpl()
 }
 return true
 }

That's it, we have switched the whole underlaying implementation of the NetworkService protocol without even
touching LoginViewController or TimelineViewController.

As this is a simple example, you might not see all the benefits right now, but if you try to use DI in your projects,
you'll see the benefits and will always use Dependency Injection.

Section 45.2: Dependency Injection Types
This example will demonstrate how to use Dependency Injection (DI) design pattern in Swift using these methods:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 212

Initializer Injection (the proper term is Constructor Injection, but since Swift has initializers it's called1.
initializer injection)
Property Injection2.
Method Injection3.

Example Setup without DI
 protocol Engine {
 func startEngine()
 func stopEngine()
 }

 class TrainEngine: Engine {
 func startEngine() {
 print("Engine started")
 }

 func stopEngine() {
 print("Engine stopped")
 }
 }

 protocol TrainCar {
 var numberOfSeats: Int { get }
 func attachCar(attach: Bool)
}

class RestaurantCar: TrainCar {
 var numberOfSeats: Int {
 get {
 return 30
 }
 }
 func attachCar(attach: Bool) {
 print("Attach car")
 }
}

class PassengerCar: TrainCar {
 var numberOfSeats: Int {
 get {
 return 50
 }
 }
 func attachCar(attach: Bool) {
 print("Attach car")
 }
}

class Train {
 let engine: Engine?
 var mainCar: TrainCar?
}

Initializer Dependency Injection

As the name says, all dependencies are injected through the class initializer. To inject dependencies through the
initializer, we'll add the initializer to the Train class.

Train class now looks like this:

class Train {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 213

 let engine: Engine?
 var mainCar: TrainCar?

 init(engine: Engine) {
 self.engine = engine
 }
}

When we want to create an instance of the Train class we'll use initializer to inject a specific Engine implementation:

let train = Train(engine: TrainEngine())

NOTE: The main advantage of the initializer injection versus the property injection is that we can set the variable as
private variable or even make it a constant with the let keyword (as we did in our example). This way we can make
sure that no one can access it or change it.

Properties Dependency Injection

DI using properties is even simpler that using an initializer. Let's inject a PassengerCar dependency to the train
object we already created using the properties DI:

train.mainCar = PassengerCar()

That's it. Our train's mainCar is now a PassengerCar instance.

Method Dependency Injection

This type of dependency injection is a little different that the previous two because it won't affect the whole object,
but it will only inject a dependency to be used in the scope of one specific method. When a dependency is only used
in a single method, it's usually not good to make the whole object dependent on it. Let's add a new method to the
Train class:

func reparkCar(trainCar: TrainCar) {
 trainCar.attachCar(attach: true)
 engine?.startEngine()
 engine?.stopEngine()
 trainCar.attachCar(attach: false)
}

Now, if we call the new Train's class method, we'll inject the TrainCar using the method dependency injection.

train.reparkCar(trainCar: RestaurantCar())

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 214

Chapter 46: Caching on disk space
Caching videos, images and audios using URLSession and FileManager

Section 46.1: Reading
let url = "https://path-to-media"
guard let documentsUrl = FileManager.default.urls(for: .documentDirectory, in:
.userDomainMask).first,
 let searchQuery = url.absoluteString.components(separatedBy: "/").last else {
 return nil
}

do {
 let directoryContents = try FileManager.default.contentsOfDirectory(at: documentsUrl,
includingPropertiesForKeys: nil, options: [])
 let cachedFiles = directoryContents.filter { $0.absoluteString.contains(searchQuery) }

 // do something with the files found by the url
} catch {
 // Could not find any files
}

Section 46.2: Saving
let url = "https://path-to-media"
let request = URLRequest(url: url)
let downloadTask = URLSession.shared.downloadTask(with: request) { (location, response, error) in
 guard let location = location,
 let response = response,
 let documentsPath = NSSearchPathForDirectoriesInDomains(.documentDirectory,
.userDomainMask, true).first else {
 return
 }
 let documentsDirectoryUrl = URL(fileURLWithPath: documentsPath)
 let documentUrl = documentsDirectoryUrl.appendingPathComponent(response.suggestedFilename)
 let _ = try? FileManager.default.moveItem(at: location, to: documentUrl)

 // documentUrl is the local URL which we just downloaded and saved to the FileManager
}.resume()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 215

Chapter 47: Algorithms with Swift
Algorithms are a backbone to computing. Making a choice of which algorithm to use in which situation
distinguishes an average from good programmer. With that in mind, here are definitions and code examples of
some of the basic algorithms out there.

Section 47.1: Sorting
Bubble Sort

This is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of
adjacent items and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps
are needed. Although the algorithm is simple, it is too slow and impractical for most problems. It has complexity of
O(n2) but it is considered slower than insertion sort.

extension Array where Element: Comparable {

func bubbleSort() -> Array<Element> {

 //check for trivial case
 guard self.count > 1 else {
 return self
 }

 //mutated copy
 var output: Array<Element> = self

 for primaryIndex in 0..<self.count {
 let passes = (output.count - 1) - primaryIndex

 //"half-open" range operator
 for secondaryIndex in 0..<passes {
 let key = output[secondaryIndex]

 //compare / swap positions
 if (key > output[secondaryIndex + 1]) {
 swap(&output[secondaryIndex], &output[secondaryIndex + 1])
 }
 }
 }

 return output
}

}

Insertion sort

Insertion sort is one of the more basic algorithms in computer science. The insertion sort ranks elements by
iterating through a collection and positions elements based on their value. The set is divided into sorted and
unsorted halves and repeats until all elements are sorted. Insertion sort has complexity of O(n2). You can put it in
an extension, like in an example below, or you can create a method for it.

extension Array where Element: Comparable {

func insertionSort() -> Array<Element> {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 216

 //check for trivial case
 guard self.count > 1 else {
 return self
 }

 //mutated copy
 var output: Array<Element> = self

 for primaryindex in 0..<output.count {

 let key = output[primaryindex]
 var secondaryindex = primaryindex

 while secondaryindex > -1 {
 if key < output[secondaryindex] {

 //move to correct position
 output.remove(at: secondaryindex + 1)
 output.insert(key, at: secondaryindex)
 }
 secondaryindex -= 1
 }
 }

 return output
}
}

Selection sort

Selection sort is noted for its simplicity. It starts with the first element in the array, saving it's value as a minimum
value (or maximum, depending on sorting order). It then itterates through the array, and replaces the min value
with any other value lesser then min it finds on the way. That min value is then placed at the leftmost part of the
array and the process is repeated, from the next index, until the end of the array. Selection sort has complexity of
O(n2) but it is considered slower than it's counterpart - Selection sort.

func selectionSort() -> Array { //check for trivial case guard self.count > 1 else { return self }

//mutated copy
var output: Array<Element> = self

for primaryindex in 0..<output.count {
 var minimum = primaryindex
 var secondaryindex = primaryindex + 1

 while secondaryindex < output.count {
 //store lowest value as minimum
 if output[minimum] > output[secondaryindex] {
 minimum = secondaryindex
 }
 secondaryindex += 1
 }

 //swap minimum value with array iteration
 if primaryindex != minimum {
 swap(&output[primaryindex], &output[minimum])
 }
}

return output

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 217

}

Quick Sort - O(n log n) complexity time

Quicksort is one of the advanced algorithms. It features a time complexity of O(n log n) and applies a divide &
conquer strategy. This combination results in advanced algorithmic performance. Quicksort first divides a large
array into two smaller sub-arrays: the low elements and the high elements. Quicksort can then recursively sort the
sub-arrays.

The steps are:

Pick an element, called a pivot, from the array.

Reorder the array so that all elements with values less than the pivot come before the pivot, while all elements with
values greater than the pivot come after it (equal values can go either way). After this partitioning, the pivot is in its
final position. This is called the partition operation.

Recursively apply the above steps to the sub-array of elements with smaller values and separately to the sub-array
of elements with greater values.

mutating func quickSort() -> Array {

func qSort(start startIndex: Int, _ pivot: Int) {

 if (startIndex < pivot) {
 let iPivot = qPartition(start: startIndex, pivot)
 qSort(start: startIndex, iPivot - 1)
 qSort(start: iPivot + 1, pivot)
 }
}
qSort(start: 0, self.endIndex - 1)
return self
}

mutating func qPartition(start startIndex: Int, _ pivot: Int) -> Int {

var wallIndex: Int = startIndex

//compare range with pivot
for currentIndex in wallIndex..<pivot {

 if self[currentIndex] <= self[pivot] {
 if wallIndex != currentIndex {
 swap(&self[currentIndex], &self[wallIndex])
 }

 //advance wall
 wallIndex += 1
 }
}
 //move pivot to final position
 if wallIndex != pivot {
 swap(&self[wallIndex], &self[pivot])
 }
 return wallIndex
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 218

Section 47.2: Insertion Sort
Insertion sort is one of the more basic algorithms in computer science. The insertion sort ranks elements by
iterating through a collection and positions elements based on their value. The set is divided into sorted and
unsorted halves and repeats until all elements are sorted. Insertion sort has complexity of O(n2). You can put it in
an extension, like in an example below, or you can create a method for it.

extension Array where Element: Comparable {

func insertionSort() -> Array<Element> {

 //check for trivial case
 guard self.count > 1 else {
 return self
 }

 //mutated copy
 var output: Array<Element> = self

 for primaryindex in 0..<output.count {

 let key = output[primaryindex]
 var secondaryindex = primaryindex

 while secondaryindex > -1 {
 if key < output[secondaryindex] {

 //move to correct position
 output.remove(at: secondaryindex + 1)
 output.insert(key, at: secondaryindex)
 }
 secondaryindex -= 1
 }
 }

 return output
}
}

Section 47.3: Selection sort
Selection sort is noted for its simplicity. It starts with the first element in the array, saving it's value as a minimum
value (or maximum, depending on sorting order). It then itterates through the array, and replaces the min value
with any other value lesser then min it finds on the way. That min value is then placed at the leftmost part of the
array and the process is repeated, from the next index, until the end of the array. Selection sort has complexity of
O(n2) but it is considered slower than it's counterpart - Selection sort.

func selectionSort() -> Array<Element> {
 //check for trivial case
 guard self.count > 1 else {
 return self
 }

 //mutated copy
 var output: Array<Element> = self

 for primaryindex in 0..<output.count {
 var minimum = primaryindex

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 219

 var secondaryindex = primaryindex + 1

 while secondaryindex < output.count {
 //store lowest value as minimum
 if output[minimum] > output[secondaryindex] {
 minimum = secondaryindex
 }
 secondaryindex += 1
 }

 //swap minimum value with array iteration
 if primaryindex != minimum {
 swap(&output[primaryindex], &output[minimum])
 }
 }

 return output
}

Section 47.4: Asymptotic analysis
Since we have many different algorithms to choose from, when we want to sort an array, we need to know which
one will do it's job. So we need some method of measuring algoritm's speed and reliability. That's where
Asymptotic analysis kicks in. Asymptotic analysis is the process of describing the efficiency of algorithms as their
input size (n) grows. In computer science, asymptotics are usually expressed in a common format known as Big O
Notation.

Linear time O(n): When each item in the array has to be evaluated in order for a function to achieve it's goal,
that means that the function becomes less efficent as number of elements is increasing. A function like this is
said to run in linear time because its speed is dependent on its input size.
Polynominal time O(n2): If complexity of a function grows exponentialy (meaning that for n elements of an
array complexity of a function is n squared) that function operates in polynominal time. These are usually
functions with nested loops. Two nested loops result in O(n2) complexity, three nested loops result in O(n3)
complexity, and so on...
Logarithmic time O(log n): Logarithmic time functions's complexity is minimized when the size of its inputs
(n) grows. These are the type of functions every programmer strives for.

Section 47.5: Quick Sort - O(n log n) complexity time
Quicksort is one of the advanced algorithms. It features a time complexity of O(n log n) and applies a divide &
conquer strategy. This combination results in advanced algorithmic performance. Quicksort first divides a large
array into two smaller sub-arrays: the low elements and the high elements. Quicksort can then recursively sort the
sub-arrays.

The steps are:

Pick an element, called a pivot, from the array.1.

Reorder the array so that all elements with values less than the pivot come before the pivot, while all2.
elements with values greater than the pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the partition operation.

Recursively apply the above steps to the sub-array of elements with smaller values and separately to the sub-3.
array of elements with greater values.

mutating func quickSort() -> Array<Element> {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 220

func qSort(start startIndex: Int, _ pivot: Int) {

 if (startIndex < pivot) {
 let iPivot = qPartition(start: startIndex, pivot)
 qSort(start: startIndex, iPivot - 1)
 qSort(start: iPivot + 1, pivot)
 }
}
qSort(start: 0, self.endIndex - 1)
return self

}

mutating func qPartition(start startIndex: Int, _ pivot: Int) -> Int {

var wallIndex: Int = startIndex

//compare range with pivot
for currentIndex in wallIndex..<pivot {

 if self[currentIndex] <= self[pivot] {
 if wallIndex != currentIndex {
 swap(&self[currentIndex], &self[wallIndex])
 }

 //advance wall
 wallIndex += 1
 }
}

 //move pivot to final position
 if wallIndex != pivot {
 swap(&self[wallIndex], &self[pivot])
 }
 return wallIndex
}

Section 47.6: Graph, Trie, Stack
Graph

In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed
graph concepts from mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices
or nodes or points, together with a set of unordered pairs of these vertices for an undirected graph or a set of
ordered pairs for a directed graph. These pairs are known as edges, arcs, or lines for an undirected graph and as
arrows, directed edges, directed arcs, or directed lines for a directed graph. The vertices may be part of the graph
structure, or may be external entities represented by integer indices or references. A graph data structure may also
associate to each edge some edge value, such as a symbolic label or a numeric attribute (cost, capacity, length, etc.).
(Wikipedia, source)

//
// GraphFactory.swift
// SwiftStructures
//
// Created by Wayne Bishop on 6/7/14.
// Copyright (c) 2014 Arbutus Software Inc. All rights reserved.
//

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 221

import Foundation

public class SwiftGraph {

 //declare a default directed graph canvas
 private var canvas: Array<Vertex>
 public var isDirected: Bool

 init() {
 canvas = Array<Vertex>()
 isDirected = true
 }

 //create a new vertex
 func addVertex(key: String) -> Vertex {

 //set the key
 let childVertex: Vertex = Vertex()
 childVertex.key = key

 //add the vertex to the graph canvas
 canvas.append(childVertex)

 return childVertex
 }

 //add edge to source vertex
 func addEdge(source: Vertex, neighbor: Vertex, weight: Int) {

 //create a new edge
 let newEdge = Edge()

 //establish the default properties
 newEdge.neighbor = neighbor
 newEdge.weight = weight
 source.neighbors.append(newEdge)

 print("The neighbor of vertex: \(source.key as String!) is \(neighbor.key as String!)..")

 //check condition for an undirected graph
 if isDirected == false {

 //create a new reversed edge
 let reverseEdge = Edge()

 //establish the reversed properties
 reverseEdge.neighbor = source

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 222

 reverseEdge.weight = weight
 neighbor.neighbors.append(reverseEdge)

 print("The neighbor of vertex: \(neighbor.key as String!) is \(source.key as
String!)..")

 }

 }

 /* reverse the sequence of paths given the shortest path.
 process analagous to reversing a linked list. */

 func reversePath(_ head: Path!, source: Vertex) -> Path! {

 guard head != nil else {
 return head
 }

 //mutated copy
 var output = head

 var current: Path! = output
 var prev: Path!
 var next: Path!

 while(current != nil) {
 next = current.previous
 current.previous = prev
 prev = current
 current = next
 }

 //append the source path to the sequence
 let sourcePath: Path = Path()

 sourcePath.destination = source
 sourcePath.previous = prev
 sourcePath.total = nil

 output = sourcePath

 return output

 }

 //process Dijkstra's shortest path algorthim
 func processDijkstra(_ source: Vertex, destination: Vertex) -> Path? {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 223

 var frontier: Array<Path> = Array<Path>()
 var finalPaths: Array<Path> = Array<Path>()

 //use source edges to create the frontier
 for e in source.neighbors {

 let newPath: Path = Path()

 newPath.destination = e.neighbor
 newPath.previous = nil
 newPath.total = e.weight

 //add the new path to the frontier
 frontier.append(newPath)

 }

 //construct the best path
 var bestPath: Path = Path()

 while frontier.count != 0 {

 //support path changes using the greedy approach
 bestPath = Path()
 var pathIndex: Int = 0

 for x in 0..<frontier.count {

 let itemPath: Path = frontier[x]

 if (bestPath.total == nil) || (itemPath.total < bestPath.total) {
 bestPath = itemPath
 pathIndex = x
 }

 }

 //enumerate the bestPath edges
 for e in bestPath.destination.neighbors {

 let newPath: Path = Path()

 newPath.destination = e.neighbor
 newPath.previous = bestPath
 newPath.total = bestPath.total + e.weight

 //add the new path to the frontier
 frontier.append(newPath)

 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 224

 //preserve the bestPath
 finalPaths.append(bestPath)

 //remove the bestPath from the frontier
 //frontier.removeAtIndex(pathIndex) - Swift2
 frontier.remove(at: pathIndex)

 } //end while

 //establish the shortest path as an optional
 var shortestPath: Path! = Path()

 for itemPath in finalPaths {

 if (itemPath.destination.key == destination.key) {

 if (shortestPath.total == nil) || (itemPath.total < shortestPath.total) {
 shortestPath = itemPath
 }

 }

 }

 return shortestPath

 }

 ///an optimized version of Dijkstra's shortest path algorthim
 func processDijkstraWithHeap(_ source: Vertex, destination: Vertex) -> Path! {

 let frontier: PathHeap = PathHeap()
 let finalPaths: PathHeap = PathHeap()

 //use source edges to create the frontier
 for e in source.neighbors {

 let newPath: Path = Path()

 newPath.destination = e.neighbor
 newPath.previous = nil
 newPath.total = e.weight

 //add the new path to the frontier
 frontier.enQueue(newPath)

 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 225

 //construct the best path
 var bestPath: Path = Path()

 while frontier.count != 0 {

 //use the greedy approach to obtain the best path
 bestPath = Path()
 bestPath = frontier.peek()

 //enumerate the bestPath edges
 for e in bestPath.destination.neighbors {

 let newPath: Path = Path()

 newPath.destination = e.neighbor
 newPath.previous = bestPath
 newPath.total = bestPath.total + e.weight

 //add the new path to the frontier
 frontier.enQueue(newPath)

 }

 //preserve the bestPaths that match destination
 if (bestPath.destination.key == destination.key) {
 finalPaths.enQueue(bestPath)
 }

 //remove the bestPath from the frontier
 frontier.deQueue()

 } //end while

 //obtain the shortest path from the heap
 var shortestPath: Path! = Path()
 shortestPath = finalPaths.peek()

 return shortestPath

 }

 //MARK: traversal algorithms

 //bfs traversal with inout closure function
 func traverse(_ startingv: Vertex, formula: (_ node: inout Vertex) -> ()) {

 //establish a new queue
 let graphQueue: Queue<Vertex> = Queue<Vertex>()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 226

 //queue a starting vertex
 graphQueue.enQueue(startingv)

 while !graphQueue.isEmpty() {

 //traverse the next queued vertex
 var vitem: Vertex = graphQueue.deQueue() as Vertex!

 //add unvisited vertices to the queue
 for e in vitem.neighbors {
 if e.neighbor.visited == false {
 print("adding vertex: \(e.neighbor.key!) to queue..")
 graphQueue.enQueue(e.neighbor)
 }
 }

 /*
 notes: this demonstrates how to invoke a closure with an inout parameter.
 By passing by reference no return value is required.
 */

 //invoke formula
 formula(&vitem)

 } //end while

 print("graph traversal complete..")

 }

 //breadth first search
 func traverse(_ startingv: Vertex) {

 //establish a new queue
 let graphQueue: Queue<Vertex> = Queue<Vertex>()

 //queue a starting vertex
 graphQueue.enQueue(startingv)

 while !graphQueue.isEmpty() {

 //traverse the next queued vertex
 let vitem = graphQueue.deQueue() as Vertex!

 guard vitem != nil else {
 return
 }

 //add unvisited vertices to the queue
 for e in vitem!.neighbors {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 227

 if e.neighbor.visited == false {
 print("adding vertex: \(e.neighbor.key!) to queue..")
 graphQueue.enQueue(e.neighbor)
 }
 }

 vitem!.visited = true
 print("traversed vertex: \(vitem!.key!)..")

 } //end while

 print("graph traversal complete..")

 } //end function

 //use bfs with trailing closure to update all values
 func update(startingv: Vertex, formula:((Vertex) -> Bool)) {

 //establish a new queue
 let graphQueue: Queue<Vertex> = Queue<Vertex>()

 //queue a starting vertex
 graphQueue.enQueue(startingv)

 while !graphQueue.isEmpty() {

 //traverse the next queued vertex
 let vitem = graphQueue.deQueue() as Vertex!

 guard vitem != nil else {
 return
 }

 //add unvisited vertices to the queue
 for e in vitem!.neighbors {
 if e.neighbor.visited == false {
 print("adding vertex: \(e.neighbor.key!) to queue..")
 graphQueue.enQueue(e.neighbor)
 }
 }

 //apply formula..
 if formula(vitem!) == false {
 print("formula unable to update: \(vitem!.key)")
 }
 else {
 print("traversed vertex: \(vitem!.key!)..")
 }

 vitem!.visited = true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 228

 } //end while

 print("graph traversal complete..")

 }

}

Trie

In computer science, a trie, also called digital tree and sometimes radix tree or prefix tree (as they can be searched
by prefixes), is a kind of search tree—an ordered tree data structure that is used to store a dynamic set or
associative array where the keys are usually strings. (Wikipedia, source)

//
// Trie.swift
// SwiftStructures
//
// Created by Wayne Bishop on 10/14/14.
// Copyright (c) 2014 Arbutus Software Inc. All rights reserved.
//
import Foundation

public class Trie {

 private var root: TrieNode!

 init(){
 root = TrieNode()
 }

 //builds a tree hierarchy of dictionary content
 func append(word keyword: String) {

 //trivial case
 guard keyword.length > 0 else {
 return
 }

 var current: TrieNode = root

 while keyword.length != current.level {

 var childToUse: TrieNode!
 let searchKey = keyword.substring(to: current.level + 1)

 //print("current has \(current.children.count) children..")

https://en.wikipedia.org/wiki/Trie
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 229

 //iterate through child nodes
 for child in current.children {

 if (child.key == searchKey) {
 childToUse = child
 break
 }

 }

 //new node
 if childToUse == nil {

 childToUse = TrieNode()
 childToUse.key = searchKey
 childToUse.level = current.level + 1
 current.children.append(childToUse)
 }

 current = childToUse

 } //end while

 //final end of word check
 if (keyword.length == current.level) {
 current.isFinal = true
 print("end of word reached!")
 return
 }

 } //end function

 //find words based on the prefix
 func search(forWord keyword: String) -> Array<String>! {

 //trivial case
 guard keyword.length > 0 else {
 return nil
 }

 var current: TrieNode = root
 var wordList = Array<String>()

 while keyword.length != current.level {

 var childToUse: TrieNode!
 let searchKey = keyword.substring(to: current.level + 1)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 230

 //print("looking for prefix: \(searchKey)..")

 //iterate through any child nodes
 for child in current.children {

 if (child.key == searchKey) {
 childToUse = child
 current = childToUse
 break
 }

 }

 if childToUse == nil {
 return nil
 }

 } //end while

 //retrieve the keyword and any descendants
 if ((current.key == keyword) && (current.isFinal)) {
 wordList.append(current.key)
 }

 //include only children that are words
 for child in current.children {

 if (child.isFinal == true) {
 wordList.append(child.key)
 }

 }

 return wordList

 } //end function

}

(GitHub, source)

Stack

In computer science, a stack is an abstract data type that serves as a collection of elements, with two principal
operations: push, which adds an element to the collection, and pop, which removes the most recently added
element that was not yet removed. The order in which elements come off a stack gives rise to its alternative name,
LIFO (for last in, first out). Additionally, a peek operation may give access to the top without modifying the stack.
(Wikipedia, source)

See license info below and original code source at (github)

https://github.com/waynewbishop/SwiftStructures/blob/master/Source/Factories/Trie.swift
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://github.com/waynewbishop/SwiftStructures/blob/master/Source/Factories/Stack.swift
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 231

//
// Stack.swift
// SwiftStructures
//
// Created by Wayne Bishop on 8/1/14.
// Copyright (c) 2014 Arbutus Software Inc. All rights reserved.
//
import Foundation

class Stack<T> {

 private var top: Node<T>

 init() {
 top = Node<T>()
 }

 //the number of items - O(n)
 var count: Int {

 //return trivial case
 guard top.key != nil else {
 return 0
 }

 var current = top
 var x: Int = 1

 //cycle through list
 while current.next != nil {
 current = current.next!
 x += 1
 }

 return x

 }

 //add item to the stack
 func push(withKey key: T) {

 //return trivial case
 guard top.key != nil else {
 top.key = key
 return
 }

 //create new item
 let childToUse = Node<T>()
 childToUse.key = key

 //set new created item at top
 childToUse.next = top

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 232

 top = childToUse

 }

 //remove item from the stack
 func pop() {

 if self.count > 1 {
 top = top.next
 }
 else {
 top.key = nil
 }

 }

 //retrieve the top most item
 func peek() -> T! {

 //determine instance
 if let topitem = top.key {
 return topitem
 }

 else {
 return nil
 }

 }

 //check for value
 func isEmpty() -> Bool {

 if self.count == 0 {
 return true
 }

 else {
 return false
 }

 }

}

The MIT License (MIT)

Copyright (c) 2015, Wayne Bishop & Arbutus Software Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 233

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 234

Chapter 48: Swift Advance functions
Advance functions like map, flatMap, filter, and reduce are used to operate on various collection types like Array
and Dictionary. Advance functions typically require little code and can be chained together in order to build up
complex logic in a concise way.

Section 48.1: Flatten multidimensional array
To flatten multidimensional array into single dimension, flatMap advance functions is used. Other use case is to
neglect nil value from array & mapping values. Let's check with example:

Suppose We have an multidimensional array of cities & we want to sorted city name list in ascending order. In that
case we can use flatMap function like:

let arrStateName = [["Alaska", "Iowa", "Missouri", "New Mexico"], ["New York", "Texas",
"Washington", "Maryland"], ["New Jersey", "Virginia", "Florida", "Colorado"]]

Preparing a single dimensional list from multidimensional array,

let arrFlatStateList = arrStateName.flatMap({ $0 }) // ["Alaska", "Iowa", "Missouri", "New Mexico",
"New York", "Texas", "Washington", "Maryland", "New Jersey", "Virginia", "Florida", "Colorado"]

For sorting array values, we can use chaining operation or sort flatten array. Here below example showing chaining
operation,

// Swift 2.3 syntax
let arrSortedStateList = arrStateName.flatMap({ $0 }).sort(<) // ["Alaska", "Colorado",
"Florida", "Iowa", "Maryland", "Missouri", "New Jersey", "New Mexico", "New York", "Texas",
"Virginia", "Washington"]

// Swift 3 syntax
let arrSortedStateList = arrStateName.flatMap({ $0 }).sorted(by: <) // ["Alaska", "Colorado",
"Florida", "Iowa", "Maryland", "Missouri", "New Jersey", "New Mexico", "New York", "Texas",
"Virginia", "Washington"]

Section 48.2: Introduction with advance functions
Let's take an scenario to understand advance function in better way,

struct User {
 var name: String
 var age: Int
 var country: String?
}

//User's information
let user1 = User(name: "John", age: 24, country: "USA")
let user2 = User(name: "Chan", age: 20, country: nil)
let user3 = User(name: "Morgan", age: 30, country: nil)
let user4 = User(name: "Rachel", age: 20, country: "UK")
let user5 = User(name: "Katie", age: 23, country: "USA")
let user6 = User(name: "David", age: 35, country: "USA")
let user7 = User(name: "Bob",age: 22, country: nil)

//User's array list

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 235

let arrUser = [user1, user2, user3, user4, user5, user6, user7]

Map Function:

Use map to loop over a collection and apply the same operation to each element in the collection. The map
function returns an array containing the results of applying a mapping or transform function to each item.

//Fetch all the user's name from array
let arrUserName = arrUser.map({ $0.name }) // ["John", "Chan", "Morgan", "Rachel", "Katie",
"David", "Bob"]

Flat-Map Function:

The simplest use is as the name suggests to flatten a collection of collections.

// Fetch all user country name & ignore nil value.
let arrCountry = arrUser.flatMap({ $0.country }) // ["USA", "UK", "USA", "USA"]

Filter Function:

Use filter to loop over a collection and return an Array containing only those elements that match an include
condition.

// Filtering USA user from the array user list.
let arrUSAUsers = arrUser.filter({ $0.country == "USA" }) // [user1, user5, user6]

// User chaining methods to fetch user's name who live in USA
let arrUserList = arrUser.filter({ $0.country == "USA" }).map({ $0.name }) // ["John", "Katie",
"David"]

Reduce:

Use reduce to combine all items in a collection to create a single new value.

Swift 2.3:

//Fetch user's total age.
let arrUserAge = arrUser.map({ $0.age }).reduce(0, combine: { $0 + $1 }) //174

//Prepare all user name string with separated by comma
let strUserName = arrUserName.reduce("", combine: { $0 == "" ? $1 : $0 + ", " + $1 }) // John,
Chan, Morgan, Rachel, Katie, David, Bob

Swift 3:

//Fetch user's total age.
let arrUserAge = arrUser.map({ $0.age }).reduce(0, { $0 + $1 }) //174

//Prepare all user name string with separated by comma
let strUserName = arrUserName.reduce("", { $0 == "" ? $1 : $0 + ", " + $1 }) // John, Chan, Morgan,
Rachel, Katie, David, Bob

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 236

Chapter 49: Completion Handler
Virtually all apps are using asynchronous functions to keep the code from blocking the main thread.

Section 49.1: Completion handler with no input argument
func sampleWithCompletion(completion:@escaping (()-> ())){
 let delayInSeconds = 1.0
 DispatchQueue.main.asyncAfter(deadline: DispatchTime.now() + delayInSeconds) {

 completion()

 }
}

//Call the function
sampleWithCompletion {
 print("after one second")
}

Section 49.2: Completion handler with input argument
enum ReadResult{
 case Successful
 case Failed
 case Pending
}

struct OutpuData {
 var data = Data()
 var result: ReadResult
 var error: Error?
}

func readData(from url: String, completion: @escaping (OutpuData) -> Void) {
 var _data = OutpuData(data: Data(), result: .Pending, error: nil)
 DispatchQueue.global().async {
 let url=URL(string: url)
 do {
 let rawData = try Data(contentsOf: url!)
 _data.result = .Successful
 _data.data = rawData
 completion(_data)
 }
 catch let error {
 _data.result = .Failed
 _data.error = error
 completion(_data)
 }

 }
}

readData(from: "https://raw.githubusercontent.com/trev/bearcal/master/sample-data-large.json") {
(output) in
 switch output.result {
 case .Successful:
 break
 case .Failed:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 237

 break
 case .Pending:
 break

 }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 238

Chapter 50: Swift HTTP server by Kitura
Swift server with Kitura

Kitura is a web framework written in swift that is created for web services. It's very easy to set up for HTTP
requests. For environment, it needs either OS X with XCode installed, or Linux running swift 3.0.

Section 50.1: Hello world application
Configuration

First, create a file called Package.swift. This is the file that tells swift compiler where the libraries are located. In this
hello world example, we are using GitHub repos. We need Kitura and HeliumLogger. Put the following code inside
Package.swift. It specified the name of the project as kitura-helloworld and also the dependency urls.

import PackageDescription
let package = Package(
 name: "kitura-helloworld",
 dependencies: [
 .Package(url: "https://github.com/IBM-Swift/HeliumLogger.git", majorVersion: 1, minor:
6),
 .Package(url: "https://github.com/IBM-Swift/Kitura.git", majorVersion: 1, minor: 6)])

Next, create a folder called Sources. Inside, create a file called main.swift. This is the file that we implement all the
logic for this application. Enter the following code into this main file.

Import libraries and enable logging

import Kitura
import Foundation
import HeliumLogger

HeliumLogger.use()

Adding a router. Router specifies a path, type, etc of the HTTP request. Here we are adding a GET request handler
which prints Hello world, and then a post request that reads plain text from the request and then send it back.

let router = Router()

router.get("/get") {
 request, response, next in
 response.send("Hello, World!")
 next()
}

router.post("/post") {
 request, response, next in
 var string: String?
 do{
 string = try request.readString()

 } catch let error {
 string = error.localizedDescription
 }
 response.send("Value \(string!) received.")
 next()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 239

}

Specify a port to run the service

let port = 8080

Bind the router and port together and add them as HTTP service

Kitura.addHTTPServer(onPort: port, with: router)
Kitura.run()

Execute

Navigate to the root folder with Package.swift file and Resources folder. Run the following command. Swift compiler
will automatically download the mentioned resources in Package.swift into Packages folder, and then compile these
resources with main.swift

swift build

When the build is finished, executable will be placed at this location. Double click this executable to start the server.

.build/debug/kitura-helloworld

Validate

Open a browser, type in localhost:8080/get as url and hit enter. The hello world page should come out.

Open a HTTP request app, post plain text to localhost:8080/post. The respond string will show the entered text
correctly.

https://i.stack.imgur.com/YOEfZ.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 240

https://i.stack.imgur.com/uY3xz.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 241

Chapter 51: Generate UIImage of Initials
from String
This is a class that will generate a UIImage of a person's initials. Harry Potter would generate an image of HP.

Section 51.1: InitialsImageFactory
class InitialsImageFactory: NSObject {

class func imageWith(name: String?) -> UIImage? {

let frame = CGRect(x: 0, y: 0, width: 50, height: 50)
let nameLabel = UILabel(frame: frame)
nameLabel.textAlignment = .center
nameLabel.backgroundColor = .lightGray
nameLabel.textColor = .white
nameLabel.font = UIFont.boldSystemFont(ofSize: 20)
var initials = ""

if let initialsArray = name?.components(separatedBy: " ") {

 if let firstWord = initialsArray.first {
 if let firstLetter = firstWord.characters.first {
 initials += String(firstLetter).capitalized
 }

 }
 if initialsArray.count > 1, let lastWord = initialsArray.last {
 if let lastLetter = lastWord.characters.first {
 initials += String(lastLetter).capitalized
 }

 }
} else {
 return nil
}

nameLabel.text = initials
UIGraphicsBeginImageContext(frame.size)
if let currentContext = UIGraphicsGetCurrentContext() {
 nameLabel.layer.render(in: currentContext)
 let nameImage = UIGraphicsGetImageFromCurrentImageContext()
 return nameImage
}
return nil
}

}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 242

Chapter 52: Design Patterns - Creational
Design patterns are general solutions to problems that frequently occur in software development. The following are
templates of standardized best practices in structuring and designing code, as well as examples of common
contexts in which these design patterns would be appropriate.

Creational design patterns abstract the instantiation of objects to make a system more independent of the
process of creation, composition, and representation.

Section 52.1: Singleton
Singletons are a frequently used design pattern which consists of a single instance of a class that is shared
throughout a program.

In the following example, we create a static property that holds an instance of the Foo class. Remember that a
static property is shared between all objects of a class and can't be overwritten by subclassing.

public class Foo
{
 static let shared = Foo()

 // Used for preventing the class from being instantiated directly
 private init() {}

 func doSomething()
 {
 print("Do something")
 }
}

Usage:

Foo.shared.doSomething()

Be sure to remember the private initializer:

This makes sure your singletons are truly unique and prevents outside objects from creating their own
instances of your class through virtue of access control. Since all objects come with a default public
initializer in Swift, you need to override your init and make it private. KrakenDev

Section 52.2: Builder Pattern

The builder pattern is an object creation software design pattern. Unlike the abstract factory pattern
and the factory method pattern whose intention is to enable polymorphism, the intention of the builder
pattern is to find a solution to the telescoping constructor anti-pattern. The telescoping constructor anti-
pattern occurs when the increase of object constructor parameter combination leads to an exponential
list of constructors. Instead of using numerous constructors, the builder pattern uses another object, a
builder, that receives each initialization parameter step by step and then returns the resulting
constructed object at once.

-Wikipedia

https://krakendev.io/blog/the-right-way-to-write-a-singleton
https://en.wikipedia.org/wiki/Builder_pattern
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 243

The main goal of the builder pattern is to setup a default configuration for an object from its creation. It is an
intermediary between the object will be built and all other objects related to building it.

Example:

To make it more clear, let's take a look at a Car Builder example.

Consider that we have a Car class contains many options to create an object, such as:

Color.
Number of seats.
Number of wheels.
Type.
Gear type.
Motor.
Airbag availability.

import UIKit

enum CarType {
 case

 sportage,
 saloon
}

enum GearType {
 case

 manual,
 automatic
}

struct Motor {
 var id: String
 var name: String
 var model: String
 var numberOfCylinders: UInt8
}

class Car: CustomStringConvertible {
 var color: UIColor
 var numberOfSeats: UInt8
 var numberOfWheels: UInt8
 var type: CarType
 var gearType: GearType
 var motor: Motor
 var shouldHasAirbags: Bool

 var description: String {
 return "color: \(color)\nNumber of seats: \(numberOfSeats)\nNumber of Wheels:
\(numberOfWheels)\n Type: \(gearType)\nMotor: \(motor)\nAirbag Availability: \(shouldHasAirbags)"
 }

 init(color: UIColor, numberOfSeats: UInt8, numberOfWheels: UInt8, type: CarType, gearType:
GearType, motor: Motor, shouldHasAirbags: Bool) {

 self.color = color
 self.numberOfSeats = numberOfSeats
 self.numberOfWheels = numberOfWheels

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 244

 self.type = type
 self.gearType = gearType
 self.motor = motor
 self.shouldHasAirbags = shouldHasAirbags

 }
}

Creating a car object:

let aCar = Car(color: UIColor.black,
 numberOfSeats: 4,
 numberOfWheels: 4,
 type: .saloon,
 gearType: .automatic,
 motor: Motor(id: "101", name: "Super Motor",
 model: "c4", numberOfCylinders: 6),
 shouldHasAirbags: true)

print(aCar)

/* Printing
 color: UIExtendedGrayColorSpace 0 1
 Number of seats: 4
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "101", name: "Super Motor", model: "c4", numberOfCylinders: 6)
 Airbag Availability: true
*/

The problem arises when creating a car object is that the car requires many configuration data to be created.

For applying the Builder Pattern, the initializer parameters should have default values which are changeable if
needed.

CarBuilder class:

class CarBuilder {
 var color: UIColor = UIColor.black
 var numberOfSeats: UInt8 = 5
 var numberOfWheels: UInt8 = 4
 var type: CarType = .saloon
 var gearType: GearType = .automatic
 var motor: Motor = Motor(id: "111", name: "Default Motor",
 model: "T9", numberOfCylinders: 4)
 var shouldHasAirbags: Bool = false

 func buildCar() -> Car {
 return Car(color: color, numberOfSeats: numberOfSeats, numberOfWheels: numberOfWheels,
type: type, gearType: gearType, motor: motor, shouldHasAirbags: shouldHasAirbags)
 }
}

The CarBuilder class defines properties that could be changed to to edit the values of the created car object.

Let's build new cars by using the CarBuilder:

var builder = CarBuilder()
// currently, the builder creates cars with default configuration.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 245

let defaultCar = builder.buildCar()
//print(defaultCar.description)
/* prints
 color: UIExtendedGrayColorSpace 0 1
 Number of seats: 5
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "111", name: "Default Motor", model: "T9", numberOfCylinders: 4)
 Airbag Availability: false
*/

builder.shouldHasAirbags = true
// now, the builder creates cars with default configuration,
// but with a small edit on making the airbags available

let safeCar = builder.buildCar()
print(safeCar.description)
/* prints
 color: UIExtendedGrayColorSpace 0 1
 Number of seats: 5
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "111", name: "Default Motor", model: "T9", numberOfCylinders: 4)
 Airbag Availability: true
 */

builder.color = UIColor.purple
// now, the builder creates cars with default configuration
// with some extra features: the airbags are available and the color is purple

let femaleCar = builder.buildCar()
print(femaleCar)
/* prints
 color: UIExtendedSRGBColorSpace 0.5 0 0.5 1
 Number of seats: 5
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "111", name: "Default Motor", model: "T9", numberOfCylinders: 4)
 Airbag Availability: true
*/

The benefit of applying the Builder Pattern is the ease of creating objects that should contain much of
configurations by setting default values, also, the ease of changing these default values.

Take it Further:

As a good practice, all properties that need default values should be in a separated protocol, which should be
implemented by the class itself and its builder.

Backing to our example, let's create a new protocol called CarBluePrint:

import UIKit

enum CarType {
 case

 sportage,
 saloon
}

enum GearType {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 246

 case

 manual,
 automatic
}

struct Motor {
 var id: String
 var name: String
 var model: String
 var numberOfCylinders: UInt8
}

protocol CarBluePrint {
 var color: UIColor { get set }
 var numberOfSeats: UInt8 { get set }
 var numberOfWheels: UInt8 { get set }
 var type: CarType { get set }
 var gearType: GearType { get set }
 var motor: Motor { get set }
 var shouldHasAirbags: Bool { get set }
}

class Car: CustomStringConvertible, CarBluePrint {
 var color: UIColor
 var numberOfSeats: UInt8
 var numberOfWheels: UInt8
 var type: CarType
 var gearType: GearType
 var motor: Motor
 var shouldHasAirbags: Bool

 var description: String {
 return "color: \(color)\nNumber of seats: \(numberOfSeats)\nNumber of Wheels:
\(numberOfWheels)\n Type: \(gearType)\nMotor: \(motor)\nAirbag Availability: \(shouldHasAirbags)"
 }

 init(color: UIColor, numberOfSeats: UInt8, numberOfWheels: UInt8, type: CarType, gearType:
GearType, motor: Motor, shouldHasAirbags: Bool) {

 self.color = color
 self.numberOfSeats = numberOfSeats
 self.numberOfWheels = numberOfWheels
 self.type = type
 self.gearType = gearType
 self.motor = motor
 self.shouldHasAirbags = shouldHasAirbags

 }
}

class CarBuilder: CarBluePrint {
 var color: UIColor = UIColor.black
 var numberOfSeats: UInt8 = 5
 var numberOfWheels: UInt8 = 4
 var type: CarType = .saloon
 var gearType: GearType = .automatic
 var motor: Motor = Motor(id: "111", name: "Default Motor",
 model: "T9", numberOfCylinders: 4)
 var shouldHasAirbags: Bool = false

 func buildCar() -> Car {

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 247

 return Car(color: color, numberOfSeats: numberOfSeats, numberOfWheels: numberOfWheels,
type: type, gearType: gearType, motor: motor, shouldHasAirbags: shouldHasAirbags)
 }
}

The benefit of declaring the properties that need default value into a protocol is the forcing to implement any new
added property; When a class conforms to a protocol, it has to declare all its properties/methods.

Consider that there is a required new feature that should be added to the blueprint of creating a car called "battery
name":

protocol CarBluePrint {
 var color: UIColor { get set }
 var numberOfSeats: UInt8 { get set }
 var numberOfWheels: UInt8 { get set }
 var type: CarType { get set }
 var gearType: GearType { get set }
 var motor: Motor { get set }
 var shouldHasAirbags: Bool { get set }

 // adding the new property
 var batteryName: String { get set }
}

After adding the new property, note that two compile-time errors will arise, notifying that conforming to
CarBluePrint protocol requires to declare 'batteryName' property. That guarantees that CarBuilder will declare
and set a default value for batteryName property.

After adding batteryName new property to CarBluePrint protocol, the implementation of both Car and CarBuilder
classes should be:

class Car: CustomStringConvertible, CarBluePrint {
 var color: UIColor
 var numberOfSeats: UInt8
 var numberOfWheels: UInt8
 var type: CarType
 var gearType: GearType
 var motor: Motor
 var shouldHasAirbags: Bool
 var batteryName: String

 var description: String {
 return "color: \(color)\nNumber of seats: \(numberOfSeats)\nNumber of Wheels:
\(numberOfWheels)\nType: \(gearType)\nMotor: \(motor)\nAirbag Availability:
\(shouldHasAirbags)\nBattery Name: \(batteryName)"
 }

 init(color: UIColor, numberOfSeats: UInt8, numberOfWheels: UInt8, type: CarType, gearType:
GearType, motor: Motor, shouldHasAirbags: Bool, batteryName: String) {

 self.color = color
 self.numberOfSeats = numberOfSeats
 self.numberOfWheels = numberOfWheels
 self.type = type
 self.gearType = gearType
 self.motor = motor
 self.shouldHasAirbags = shouldHasAirbags
 self.batteryName = batteryName
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 248

}

class CarBuilder: CarBluePrint {
 var color: UIColor = UIColor.red
 var numberOfSeats: UInt8 = 5
 var numberOfWheels: UInt8 = 4
 var type: CarType = .saloon
 var gearType: GearType = .automatic
 var motor: Motor = Motor(id: "111", name: "Default Motor",
 model: "T9", numberOfCylinders: 4)
 var shouldHasAirbags: Bool = false
 var batteryName: String = "Default Battery Name"

 func buildCar() -> Car {
 return Car(color: color, numberOfSeats: numberOfSeats, numberOfWheels: numberOfWheels,
type: type, gearType: gearType, motor: motor, shouldHasAirbags: shouldHasAirbags, batteryName:
batteryName)
 }
}

Again, let's build new cars by using the CarBuilder:

var builder = CarBuilder()

let defaultCar = builder.buildCar()
print(defaultCar)
/* prints
 color: UIExtendedSRGBColorSpace 1 0 0 1
 Number of seats: 5
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "111", name: "Default Motor", model: "T9", numberOfCylinders: 4)
 Airbag Availability: false
 Battery Name: Default Battery Name
*/

builder.batteryName = "New Battery Name"

let editedBatteryCar = builder.buildCar()
print(editedBatteryCar)
/*
 color: UIExtendedSRGBColorSpace 1 0 0 1
 Number of seats: 5
 Number of Wheels: 4
 Type: automatic
 Motor: Motor(id: "111", name: "Default Motor", model: "T9", numberOfCylinders: 4)
 Airbag Availability: false
 Battery Name: New Battery Name
 */

Section 52.3: Factory Method

In class-based programming, the factory method pattern is a creational pattern that uses factory
methods to deal with the problem of creating objects without having to specify the exact class of the
object that will be created. Wikipedia reference

protocol SenderProtocol
{

https://en.wikipedia.org/wiki/Factory_method_pattern
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 249

 func send(package: AnyObject)
}

class Fedex: SenderProtocol
{
 func send(package: AnyObject)
 {
 print("Fedex deliver")
 }
}

class RegularPriorityMail: SenderProtocol
{
 func send(package: AnyObject)
 {
 print("Regular Priority Mail deliver")
 }
}

// This is our Factory
class DeliverFactory
{
 // It will be responsable for returning the proper instance that will handle the task
 static func makeSender(isLate isLate: Bool) -> SenderProtocol
 {
 return isLate ? Fedex() : RegularPriorityMail()
 }
}

// Usage:
let package = ["Item 1", "Item 2"]

// Fedex class will handle the delivery
DeliverFactory.makeSender(isLate:true).send(package)

// Regular Priority Mail class will handle the delivery
DeliverFactory.makeSender(isLate:false).send(package)

By doing that we don't depend on the real implementation of the class, making the sender() completely
transparent to who is consuming it.

In this case all we need to know is that a sender will handle the deliver and exposes a method called send(). There
are several other advantages: reduce classes coupling, easier to test, easier to add new behaviours without having
to change who is consuming it.

Within object-oriented design, interfaces provide layers of abstraction that facilitate conceptual
explanation of the code and create a barrier preventing dependencies.Wikipedia reference

Section 52.4: Observer

The observer pattern is where an object, called the subject, maintains a list of its dependents, called
observers, and notifies them automatically of any state changes, usually by calling one of their methods.
It is mainly used to implement distributed event handling systems. The Observer pattern is also a key part
in the familiar model–view–controller (MVC) architectural pattern.Wikipedia reference

https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Observer_pattern
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 250

Basically the observer pattern is used when you have an object which can notify observers of certain behaviors or
state changes.

First lets create a global reference (outside of a class) for the Notification Centre :

let notifCentre = NotificationCenter.default

Great now we can call this from anywhere. We would then want to register a class as an observer...

notifCentre.addObserver(self, selector: #selector(self.myFunc), name: "myNotification", object:
nil)

This adds the class as an observer for "readForMyFunc". It also indicates that the function myFunc should be called
when that notification is received. This function should be written in the same class:

func myFunc(){
 print("The notification has been received")
}

One of the advantages to this pattern is that you can add many classes as observers and thus perform
many actions after one notification.

The notification can now simply be sent(or posted if you prefer) from almost anywhere in the code with the line:

notifCentre.post(name: "myNotification", object: nil)

You can also pass information with the notification as a Dictionary

let myInfo = "pass this on"
notifCentre.post(name: "myNotification", object: ["moreInfo":myInfo])

But then you need to add a notification to your function:

func myFunc(_ notification: Notification){
 let userInfo = (notification as NSNotification).userInfo as! [String: AnyObject]
 let passedInfo = userInfo["moreInfo"]
 print("The notification \(moreInfo) has been received")
 //prints - The notification pass this on has been received
}

Section 52.5: Chain of responsibility

In object-oriented design, the chain-of-responsibility pattern is a design pattern consisting of a source of
command objects and a series of processing objects. Each processing object contains logic that defines
the types of command objects that it can handle; the rest are passed to the next processing object in the
chain. A mechanism also exists for adding new processing objects to the end of this chain. Wikipedia

Setting up the classes that made up the chain of responsibility.

First we create an interface for all the processing objects.

https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 251

protocol PurchasePower {
var allowable : Float { get }
 var role : String { get }
 var successor : PurchasePower? { get set }
}

extension PurchasePower {
 func process(request : PurchaseRequest){
 if request.amount < self.allowable {
 print(self.role + " will approve $ \(request.amount) for \(request.purpose)")
 } else if successor != nil {
 successor?.process(request: request)
 }
 }
}

Then we create the command object.

struct PurchaseRequest {
 var amount : Float
 var purpose : String
}

Finally, creating objects that made up the chain of responsibility.

class ManagerPower : PurchasePower {
 var allowable: Float = 20
 var role : String = "Manager"
 var successor: PurchasePower?
}

class DirectorPower : PurchasePower {
 var allowable: Float = 100
 var role = "Director"
 var successor: PurchasePower?
}

class PresidentPower : PurchasePower {
 var allowable: Float = 5000
 var role = "President"
 var successor: PurchasePower?
}

Initiate and chaining it together :

let manager = ManagerPower()
let director = DirectorPower()
let president = PresidentPower()

manager.successor = director
director.successor = president

The mechanism for chaining up objects here is property access

Creating request to run it :

manager.process(request: PurchaseRequest(amount: 2, purpose: "buying a pen")) // Manager will

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 252

approve $ 2.0 for buying a pen
manager.process(request: PurchaseRequest(amount: 90, purpose: "buying a printer")) // Director will
approve $ 90.0 for buying a printer

manager.process(request: PurchaseRequest(amount: 2000, purpose: "invest in stock")) // President
will approve $ 2000.0 for invest in stock

Section 52.6: Iterator

In computer programming an iterator is an object that enables a programmer to traverse a container,
particularly lists. Wikipedia

struct Turtle {
 let name: String
}

struct Turtles {
 let turtles: [Turtle]
}

struct TurtlesIterator: IteratorProtocol {
 private var current = 0
 private let turtles: [Turtle]

 init(turtles: [Turtle]) {
 self.turtles = turtles
 }

 mutating func next() -> Turtle? {
 defer { current += 1 }
 return turtles.count > current ? turtles[current] : nil
 }
}

extension Turtles: Sequence {
 func makeIterator() -> TurtlesIterator {
 return TurtlesIterator(turtles: turtles)
 }
}

And usage example would be

let ninjaTurtles = Turtles(turtles: [Turtle(name: "Leo"),
 Turtle(name: "Mickey"),
 Turtle(name: "Raph"),
 Turtle(name: "Doney")])
print("Splinter and")
for turtle in ninjaTurtles {
 print("The great: \(turtle)")
}

https://en.wikipedia.org/wiki/Iterator
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 253

Chapter 53: Design Patterns - Structural
Design patterns are general solutions to problems that frequently occur in software development. The following are
templates of standardized best practices in structuring and designing code, as well as examples of common
contexts in which these design patterns would be appropriate.

Structural design patterns focus on the composition of classes and objects to create interfaces and achieve
greater functionality.

Section 53.1: Adapter
Adapters are used to convert the interface of a given class, known as an Adaptee, into another interface, called the
Target. Operations on the Target are called by a Client, and those operations are adapted by the Adapter and
passed on to the Adaptee.

In Swift, Adapters can often be formed through the use of protocols. In the following example, a Client able to
communicate with the Target is provided with the ability to perform functions of the Adaptee class through the use
of an adapter.

// The functionality to which a Client has no direct access
class Adaptee {
 func foo() {
 // ...
 }
}

// Target's functionality, to which a Client does have direct access
protocol TargetFunctionality {
 func fooBar() {}
}

// Adapter used to pass the request on the Target to a request on the Adaptee
extension Adaptee: TargetFunctionality {
 func fooBar() {
 foo()
 }
}

Example flow of a one-way adapter: Client -> Target -> Adapter -> Adaptee

Adapters can also be bi-directional, and these are known as two-way adapters. A two-way adapter may be useful
when two different clients need to view an object differently.

Section 53.2: Facade
A Facade provides a unified, high-level interface to subsystem interfaces. This allows for simpler, safer access to the
more general facilities of a subsystem.

The following is an example of a Facade used to set and retrieve objects in UserDefaults.

enum Defaults {

 static func set(_ object: Any, forKey defaultName: String) {
 let defaults: UserDefaults = UserDefaults.standard
 defaults.set(object, forKey:defaultName)
 defaults.synchronize()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 254

 }

 static func object(forKey key: String) -> AnyObject! {
 let defaults: UserDefaults = UserDefaults.standard
 return defaults.object(forKey: key) as AnyObject!
 }

}

Usage might look like the following.

Defaults.set("Beyond all recognition.", forKey:"fooBar")
Defaults.object(forKey: "fooBar")

The complexities of accessing the shared instance and synchronizing UserDefaults are hidden from the client, and
this interface can be accessed from anywhere in the program.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 255

Chapter 54: (Unsafe) Buer Pointers
“A buffer pointer is used for low-level access to a region of memory. For example, you can use a buffer pointer for
efficent processing and communication of data between apps and services.”

Excerpt From: Apple Inc. “Using Swift with Cocoa and Objective-C (Swift 3.1 Edition).” iBooks.
https://itun.es/us/utTW7.l

You are responsible for handling the life cycle of any memory you work with through buffer pointers, to avoid leaks
or undefined behavior.

Section 54.1: UnsafeMutablePointer
struct UnsafeMutablePointer<Pointee>

A pointer for accessing and manipulating data of a specific type.

You use instances of the UnsafeMutablePointer type to access data of a specific type in memory. The type of data
that a pointer can access is the pointer's Pointee type. UnsafeMutablePointer provides no automated memory
management or alignment guarantees. You are responsible for handling the life cycle of any memory you work with
through unsafe pointers to avoid leaks or undefined behavior.

Memory that you manually manage can be either untyped or bound to a specific type. You use the
UnsafeMutablePointer type to access and manage memory that has been bound to a specific type. (Source)

import Foundation

let arr = [1,5,7,8]

let pointer = UnsafeMutablePointer<[Int]>.allocate(capacity: 4)
pointer.initialize(to: arr)

let x = pointer.pointee[3]

print(x)

pointer.deinitialize()
pointer.deallocate(capacity: 4)

class A {
 var x: String?

 convenience init (_ x: String) {
 self.init()
 self.x = x
 }

 func description() -> String {
 return x ?? ""
 }
}

let arr2 = [A("OK"), A("OK 2")]
let pointer2 = UnsafeMutablePointer<[A]>.allocate(capacity: 2)

https://itun.es/us/utTW7.l
http://swiftdoc.org/v3.1/type/UnsafeMutablePointer/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 256

pointer2.initialize(to: arr2)

pointer2.pointee
let y = pointer2.pointee[1]

print(y)

pointer2.deinitialize()
pointer2.deallocate(capacity: 2)

Converted to Swift 3.0 from original source

Section 54.2: Practical Use-Case for Buer Pointers
Deconstructing the use of an unsafe pointer in the Swift library method;

public init?(validatingUTF8 cString: UnsafePointer<CChar>)

Purpose:

Creates a new string by copying and validating the null-terminated UTF-8 data referenced by the given pointer.

This initializer does not try to repair ill-formed UTF-8 code unit sequences. If any are found, the result of the
initializer is nil. The following example calls this initializer with pointers to the contents of two different CChar
arrays---the first with well-formed UTF-8 code unit sequences and the second with an ill-formed sequence at the
end.

Source, Apple Inc., Swift 3 header file (For header access: In Playground, Cmd+Click on the word Swift)
in the line of code:

import Swift

let validUTF8: [CChar] = [67, 97, 102, -61, -87, 0]
 validUTF8.withUnsafeBufferPointer { ptr in
 let s = String(validatingUTF8: ptr.baseAddress!)
 print(s as Any)
 }
 // Prints "Optional(Café)"

 let invalidUTF8: [CChar] = [67, 97, 102, -61, 0]
 invalidUTF8.withUnsafeBufferPointer { ptr in
 let s = String(validatingUTF8: ptr.baseAddress!)
 print(s as Any)
 }
// Prints "nil"

(Source, Apple Inc., Swift Header File Example)

https://gist.github.com/Ben-G/4bc238d243f56a8354d4
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 257

Chapter 55: Cryptographic Hashing
Section 55.1: HMAC with MD5, SHA1, SHA224, SHA256, SHA384,
SHA512 (Swift 3)

These functions will hash either String or Data input with one of eight cryptographic hash algorithms.

The name parameter specifies the hash function name as a String Supported functions are MD5, SHA1, SHA224,
SHA256, SHA384 and SHA512

This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework to the project.

These functions takes a hash name, message to be hashed, a key and return a digest:

hashName: name of a hash function as String message: message as Data key: key as Data returns: digest as Data

func hmac(hashName:String, message:Data, key:Data) -> Data? {
 let algos = ["SHA1": (kCCHmacAlgSHA1, CC_SHA1_DIGEST_LENGTH),
 "MD5": (kCCHmacAlgMD5, CC_MD5_DIGEST_LENGTH),
 "SHA224": (kCCHmacAlgSHA224, CC_SHA224_DIGEST_LENGTH),
 "SHA256": (kCCHmacAlgSHA256, CC_SHA256_DIGEST_LENGTH),
 "SHA384": (kCCHmacAlgSHA384, CC_SHA384_DIGEST_LENGTH),
 "SHA512": (kCCHmacAlgSHA512, CC_SHA512_DIGEST_LENGTH)]
 guard let (hashAlgorithm, length) = algos[hashName] else { return nil }
 var macData = Data(count: Int(length))

 macData.withUnsafeMutableBytes {macBytes in
 message.withUnsafeBytes {messageBytes in
 key.withUnsafeBytes {keyBytes in
 CCHmac(CCHmacAlgorithm(hashAlgorithm),
 keyBytes, key.count,
 messageBytes, message.count,
 macBytes)
 }
 }
 }
 return macData
}

hashName: name of a hash function as String message: message as String key: key as String returns: digest as Data

func hmac(hashName:String, message:String, key:String) -> Data? {
 let messageData = message.data(using:.utf8)!
 let keyData = key.data(using:.utf8)!
 return hmac(hashName:hashName, message:messageData, key:keyData)
}

hashName: name of a hash function as String message: message as String key: key as Data returns: digest as Data

func hmac(hashName:String, message:String, key:Data) -> Data? {
 let messageData = message.data(using:.utf8)!
 return hmac(hashName:hashName, message:messageData, key:key)
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 258

// Examples

let clearString = "clearData0123456"
let keyString = "keyData8901234562"
let clearData = clearString.data(using:.utf8)!
let keyData = keyString.data(using:.utf8)!
print("clearString: \(clearString)")
print("keyString: \(keyString)")
print("clearData: \(clearData as NSData)")
print("keyData: \(keyData as NSData)")

let hmacData1 = hmac(hashName:"SHA1", message:clearData, key:keyData)
print("hmacData1: \(hmacData1! as NSData)")

let hmacData2 = hmac(hashName:"SHA1", message:clearString, key:keyString)
print("hmacData2: \(hmacData2! as NSData)")

let hmacData3 = hmac(hashName:"SHA1", message:clearString, key:keyData)
print("hmacData3: \(hmacData3! as NSData)")

Output:

clearString: clearData0123456
keyString: keyData8901234562
clearData: <636c6561 72446174 61303132 33343536>
keyData: <6b657944 61746138 39303132 33343536 32>

hmacData1:
hmacData2:
hmacData3:

Section 55.2: MD2, MD4, MD5, SHA1, SHA224, SHA256, SHA384,
SHA512 (Swift 3)

These functions will hash either String or Data input with one of eight cryptographic hash algorithms.

The name parameter specifies the hash function name as a String
Supported functions are MD2, MD4, MD5, SHA1, SHA224, SHA256, SHA384 and SHA512

This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework to the project.

This function takes a hash name and Data to be hashed and returns a Data:

name: A name of a hash function as a String data: The Data to be hashed returns: the hashed result as Data

func hash(name:String, data:Data) -> Data? {
 let algos = ["MD2": (CC_MD2, CC_MD2_DIGEST_LENGTH),
 "MD4": (CC_MD4, CC_MD4_DIGEST_LENGTH),
 "MD5": (CC_MD5, CC_MD5_DIGEST_LENGTH),
 "SHA1": (CC_SHA1, CC_SHA1_DIGEST_LENGTH),
 "SHA224": (CC_SHA224, CC_SHA224_DIGEST_LENGTH),
 "SHA256": (CC_SHA256, CC_SHA256_DIGEST_LENGTH),
 "SHA384": (CC_SHA384, CC_SHA384_DIGEST_LENGTH),

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 259

 "SHA512": (CC_SHA512, CC_SHA512_DIGEST_LENGTH)]
 guard let (hashAlgorithm, length) = algos[name] else { return nil }
 var hashData = Data(count: Int(length))

 _ = hashData.withUnsafeMutableBytes {digestBytes in
 data.withUnsafeBytes {messageBytes in
 hashAlgorithm(messageBytes, CC_LONG(data.count), digestBytes)
 }
 }
 return hashData
}

This function takes a hash name and String to be hashed and returns a Data:

name: A name of a hash function as a String string: The String to be hashed returns: the hashed result as Data

func hash(name:String, string:String) -> Data? {
 let data = string.data(using:.utf8)!
 return hash(name:name, data:data)
}

Examples:

let clearString = "clearData0123456"
let clearData = clearString.data(using:.utf8)!
print("clearString: \(clearString)")
print("clearData: \(clearData as NSData)")

let hashSHA256 = hash(name:"SHA256", string:clearString)
print("hashSHA256: \(hashSHA256! as NSData)")

let hashMD5 = hash(name:"MD5", data:clearData)
print("hashMD5: \(hashMD5! as NSData)")

Output:

clearString: clearData0123456
clearData: <636c6561 72446174 61303132 33343536>

hashSHA256: <aabc766b 6b357564 e41f4f91 2d494bcc bfa16924 b574abbd ba9e3e9d a0c8920a>
hashMD5: <4df665f7 b94aea69 695b0e7b baf9e9d6>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 260

Chapter 56: AES encryption
Section 56.1: AES encryption in CBC mode with a random IV
(Swift 3.0)
The iv is prefixed to the encrypted data

aesCBC128Encrypt will create a random IV and prefixed to the encrypted code.
aesCBC128Decrypt will use the prefixed IV during decryption.

Inputs are the data and key are Data objects. If an encoded form such as Base64 if required convert to and/or from
in the calling method.

The key should be exactly 128-bits (16-bytes), 192-bits (24-bytes) or 256-bits (32-bytes) in length. If another key size
is used an error will be thrown.

PKCS#7 padding is set by default.

This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework to the project.

This is example, not production code.

enum AESError: Error {
 case KeyError((String, Int))
 case IVError((String, Int))
 case CryptorError((String, Int))
}

// The iv is prefixed to the encrypted data
func aesCBCEncrypt(data:Data, keyData:Data) throws -> Data {
 let keyLength = keyData.count
 let validKeyLengths = [kCCKeySizeAES128, kCCKeySizeAES192, kCCKeySizeAES256]
 if (validKeyLengths.contains(keyLength) == false) {
 throw AESError.KeyError(("Invalid key length", keyLength))
 }

 let ivSize = kCCBlockSizeAES128;
 let cryptLength = size_t(ivSize + data.count + kCCBlockSizeAES128)
 var cryptData = Data(count:cryptLength)

 let status = cryptData.withUnsafeMutableBytes {ivBytes in
 SecRandomCopyBytes(kSecRandomDefault, kCCBlockSizeAES128, ivBytes)
 }
 if (status != 0) {
 throw AESError.IVError(("IV generation failed", Int(status)))
 }

 var numBytesEncrypted :size_t = 0
 let options = CCOptions(kCCOptionPKCS7Padding)

 let cryptStatus = cryptData.withUnsafeMutableBytes {cryptBytes in
 data.withUnsafeBytes {dataBytes in
 keyData.withUnsafeBytes {keyBytes in
 CCCrypt(CCOperation(kCCEncrypt),
 CCAlgorithm(kCCAlgorithmAES),

https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 261

 options,
 keyBytes, keyLength,
 cryptBytes,
 dataBytes, data.count,
 cryptBytes+kCCBlockSizeAES128, cryptLength,
 &numBytesEncrypted)
 }
 }
 }

 if UInt32(cryptStatus) == UInt32(kCCSuccess) {
 cryptData.count = numBytesEncrypted + ivSize
 }
 else {
 throw AESError.CryptorError(("Encryption failed", Int(cryptStatus)))
 }

 return cryptData;
}

// The iv is prefixed to the encrypted data
func aesCBCDecrypt(data:Data, keyData:Data) throws -> Data? {
 let keyLength = keyData.count
 let validKeyLengths = [kCCKeySizeAES128, kCCKeySizeAES192, kCCKeySizeAES256]
 if (validKeyLengths.contains(keyLength) == false) {
 throw AESError.KeyError(("Invalid key length", keyLength))
 }

 let ivSize = kCCBlockSizeAES128;
 let clearLength = size_t(data.count - ivSize)
 var clearData = Data(count:clearLength)

 var numBytesDecrypted :size_t = 0
 let options = CCOptions(kCCOptionPKCS7Padding)

 let cryptStatus = clearData.withUnsafeMutableBytes {cryptBytes in
 data.withUnsafeBytes {dataBytes in
 keyData.withUnsafeBytes {keyBytes in
 CCCrypt(CCOperation(kCCDecrypt),
 CCAlgorithm(kCCAlgorithmAES128),
 options,
 keyBytes, keyLength,
 dataBytes,
 dataBytes+kCCBlockSizeAES128, clearLength,
 cryptBytes, clearLength,
 &numBytesDecrypted)
 }
 }
 }

 if UInt32(cryptStatus) == UInt32(kCCSuccess) {
 clearData.count = numBytesDecrypted
 }
 else {
 throw AESError.CryptorError(("Decryption failed", Int(cryptStatus)))
 }

 return clearData;
}

Example usage:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 262

let clearData = "clearData0123456".data(using:String.Encoding.utf8)!
let keyData = "keyData890123456".data(using:String.Encoding.utf8)!
print("clearData: \(clearData as NSData)")
print("keyData: \(keyData as NSData)")

var cryptData :Data?
do {
 cryptData = try aesCBCEncrypt(data:clearData, keyData:keyData)
 print("cryptData: \(cryptData! as NSData)")
}
catch (let status) {
 print("Error aesCBCEncrypt: \(status)")
}

let decryptData :Data?
do {
 let decryptData = try aesCBCDecrypt(data:cryptData!, keyData:keyData)
 print("decryptData: \(decryptData! as NSData)")
}
catch (let status) {
 print("Error aesCBCDecrypt: \(status)")
}

Example Output:

clearData: <636c6561 72446174 61303132 33343536>
keyData: <6b657944 61746138 39303132 33343536>
cryptData: <92c57393 f454d959 5a4d158f 6e1cd3e7 77986ee9 b2970f49 2bafcf1a 8ee9d51a bde49c31
d7780256 71837a61 60fa4be0>
decryptData: <636c6561 72446174 61303132 33343536>

Notes:
One typical problem with CBC mode example code is that it leaves the creation and sharing of the random IV to the
user. This example includes generation of the IV, prefixed the encrypted data and uses the prefixed IV during
decryption. This frees the casual user from the details that are necessary for CBC mode.

For security the encrypted data also should have authentication, this example code does not provide that in order
to be small and allow better interoperability for other platforms.

Also missing is key derivation of the key from a password, it is suggested that PBKDF2 be used is text passwords are
used as keying material.

For robust production ready multi-platform encryption code see RNCryptor.

Updated to use throw/catch and multiple key sizes based on the provided key.

Section 56.2: AES encryption in CBC mode with a random IV
(Swift 2.3)
The iv is prefixed to the encrypted data

aesCBC128Encrypt will create a random IV and prefixed to the encrypted code. aesCBC128Decrypt will use the
prefixed IV during decryption.

Inputs are the data and key are Data objects. If an encoded form such as Base64 if required convert to and/or from

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29
https://en.wikipedia.org/wiki/PBKDF2
https://github.com/RNCryptor
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 263

in the calling method.

The key should be exactly 128-bits (16-bytes). For other key sizes see the Swift 3.0 example.

PKCS#7 padding is set by default.

This example requires Common Crypto It is necessary to have a bridging header to the project: #import
<CommonCrypto/CommonCrypto.h> Add the Security.framework to the project.

See Swift 3 example for notes.

This is example, not production code.

func aesCBC128Encrypt(data data:[UInt8], keyData:[UInt8]) -> [UInt8]? {
 let keyLength = size_t(kCCKeySizeAES128)
 let ivLength = size_t(kCCBlockSizeAES128)
 let cryptDataLength = size_t(data.count + kCCBlockSizeAES128)
 var cryptData = [UInt8](count:ivLength + cryptDataLength, repeatedValue:0)

 let status = SecRandomCopyBytes(kSecRandomDefault, Int(ivLength),
UnsafeMutablePointer<UInt8>(cryptData));
 if (status != 0) {
 print("IV Error, errno: \(status)")
 return nil
 }

 var numBytesEncrypted :size_t = 0
 let cryptStatus = CCCrypt(CCOperation(kCCEncrypt),
 CCAlgorithm(kCCAlgorithmAES128),
 CCOptions(kCCOptionPKCS7Padding),
 keyData, keyLength,
 cryptData,
 data, data.count,
 &cryptData + ivLength, cryptDataLength,
 &numBytesEncrypted)

 if UInt32(cryptStatus) == UInt32(kCCSuccess) {
 cryptData.removeRange(numBytesEncrypted+ivLength..<cryptData.count)
 }
 else {
 print("Error: \(cryptStatus)")
 return nil;
 }

 return cryptData;
}

func aesCBC128Decrypt(data data:[UInt8], keyData:[UInt8]) -> [UInt8]? {
 let clearLength = size_t(data.count)
 var clearData = [UInt8](count:clearLength, repeatedValue:0)

 let keyLength = size_t(kCCKeySizeAES128)
 let ivLength = size_t(kCCBlockSizeAES128)

 var numBytesDecrypted :size_t = 0
 let cryptStatus = CCCrypt(CCOperation(kCCDecrypt),
 CCAlgorithm(kCCAlgorithmAES128),
 CCOptions(kCCOptionPKCS7Padding),
 keyData, keyLength,
 data,
 UnsafePointer<UInt8>(data) + ivLength, data.count - ivLength,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 264

 &clearData, clearLength,
 &numBytesDecrypted)

 if UInt32(cryptStatus) == UInt32(kCCSuccess) {
 clearData.removeRange(numBytesDecrypted..<clearLength)

 } else {
 print("Error: \(cryptStatus)")
 return nil;
 }

 return clearData;
}

Example usage:

let clearData = toData("clearData0123456")
let keyData = toData("keyData890123456")

print("clearData: \(toHex(clearData))")
print("keyData: \(toHex(keyData))")
let cryptData = aesCBC128Encrypt(data:clearData, keyData:keyData)!
print("cryptData: \(toHex(cryptData))")
let decryptData = aesCBC128Decrypt(data:cryptData, keyData:keyData)!
print("decryptData: \(toHex(decryptData))")

Example Output:

clearData: <636c6561 72446174 61303132 33343536>
keyData: <6b657944 61746138 39303132 33343536>
cryptData: <9fce4323 830e3734 93dd93bf e464f72a a653a3a5 2c40d5ea e90c1017 958750a7 ff094c53
6a81b458 b1fbd6d4 1f583298>
decryptData: <636c6561 72446174 61303132 33343536>

Section 56.3: AES encryption in ECB mode with PKCS7 padding
From Apple documentation for IV,

This parameter is ignored if ECB mode is used or if a stream cipher algorithm is selected.

func AESEncryption(key: String) -> String? {

 let keyData: NSData! = (key as NSString).data(using: String.Encoding.utf8.rawValue) as
NSData!

 let data: NSData! = (self as NSString).data(using: String.Encoding.utf8.rawValue) as
NSData!

 let cryptData = NSMutableData(length: Int(data.length) + kCCBlockSizeAES128)!

 let keyLength = size_t(kCCKeySizeAES128)
 let operation: CCOperation = UInt32(kCCEncrypt)
 let algoritm: CCAlgorithm = UInt32(kCCAlgorithmAES128)
 let options: CCOptions = UInt32(kCCOptionECBMode + kCCOptionPKCS7Padding)

 var numBytesEncrypted :size_t = 0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 265

 let cryptStatus = CCCrypt(operation,
 algoritm,
 options,
 keyData.bytes, keyLength,
 nil,
 data.bytes, data.length,
 cryptData.mutableBytes, cryptData.length,
 &numBytesEncrypted)

 if UInt32(cryptStatus) == UInt32(kCCSuccess) {
 cryptData.length = Int(numBytesEncrypted)

 var bytes = [UInt8](repeating: 0, count: cryptData.length)
 cryptData.getBytes(&bytes, length: cryptData.length)

 var hexString = ""
 for byte in bytes {
 hexString += String(format:"%02x", UInt8(byte))
 }

 return hexString
 }

 return nil
 }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 266

Chapter 57: PBKDF2 Key Derivation
Section 57.1: Password Based Key Derivation 2 (Swift 3)
Password Based Key Derivation can be used both for deriving an encryption key from password text and saving a
password for authentication purposes.

There are several hash algorithms that can be used including SHA1, SHA256, SHA512 which are provided by this
example code.

The rounds parameter is used to make the calculation slow so that an attacker will have to spend substantial time
on each attempt. Typical delay values fall in the 100ms to 500ms, shorter values can be used if there is
unacceptable performance.

This example requires Common Crypto
It is necessary to have a bridging header to the project:
#import <CommonCrypto/CommonCrypto.h>
Add the Security.framework to the project.

Parameters:

password password String
salt salt Data
keyByteCount number of key bytes to generate
rounds Iteration rounds

returns Derived key

func pbkdf2SHA1(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
 return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA1), password:password, salt:salt,
keyByteCount:keyByteCount, rounds:rounds)
}

func pbkdf2SHA256(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
 return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA256), password:password, salt:salt,
keyByteCount:keyByteCount, rounds:rounds)
}

func pbkdf2SHA512(password: String, salt: Data, keyByteCount: Int, rounds: Int) -> Data? {
 return pbkdf2(hash:CCPBKDFAlgorithm(kCCPRFHmacAlgSHA512), password:password, salt:salt,
keyByteCount:keyByteCount, rounds:rounds)
}

func pbkdf2(hash :CCPBKDFAlgorithm, password: String, salt: Data, keyByteCount: Int, rounds: Int)
-> Data? {
 let passwordData = password.data(using:String.Encoding.utf8)!
 var derivedKeyData = Data(repeating:0, count:keyByteCount)

 let derivationStatus = derivedKeyData.withUnsafeMutableBytes {derivedKeyBytes in
 salt.withUnsafeBytes { saltBytes in

 CCKeyDerivationPBKDF(
 CCPBKDFAlgorithm(kCCPBKDF2),
 password, passwordData.count,
 saltBytes, salt.count,
 hash,
 UInt32(rounds),

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 267

 derivedKeyBytes, derivedKeyData.count)
 }
 }
 if (derivationStatus != 0) {
 print("Error: \(derivationStatus)")
 return nil;
 }

 return derivedKeyData
}

Example usage:

let password = "password"
//let salt = "saltData".data(using: String.Encoding.utf8)!
let salt = Data(bytes: [0x73, 0x61, 0x6c, 0x74, 0x44, 0x61, 0x74, 0x61])
let keyByteCount = 16
let rounds = 100000

let derivedKey = pbkdf2SHA1(password:password, salt:salt, keyByteCount:keyByteCount, rounds:rounds)
print("derivedKey (SHA1): \(derivedKey! as NSData)")

Example Output:

derivedKey (SHA1): <6b9d4fa3 0385d128 f6d196ee 3f1d6dbf>

Section 57.2: Password Based Key Derivation 2 (Swift 2.3)
See Swift 3 example for usage information and notes

func pbkdf2SHA1(password: String, salt: [UInt8], keyCount: Int, rounds: Int) -> [UInt8]? {
 return pbkdf2(CCPBKDFAlgorithm(kCCPRFHmacAlgSHA1), password:password, salt:salt,
keyCount:keyCount, rounds:UInt32(rounds))
}

func pbkdf2SHA256(password: String, salt: [UInt8], keyCount: Int, rounds: Int) -> [UInt8]? {
 return pbkdf2(CCPBKDFAlgorithm(kCCPRFHmacAlgSHA256), password:password, salt:salt,
keyCount:keyCount, rounds:UInt32(rounds))
}

func pbkdf2SHA512(password: String, salt: [UInt8], keyCount: Int, rounds: Int) -> [UInt8]? {
 return pbkdf2(CCPBKDFAlgorithm(kCCPRFHmacAlgSHA512), password:password, salt:salt,
keyCount:keyCount, rounds:UInt32(rounds))
}

func pbkdf2(hash :CCPBKDFAlgorithm, password: String, salt: [UInt8], keyCount: Int, rounds:
UInt32!) -> [UInt8]! {
 let derivedKey = [UInt8](count:keyCount, repeatedValue:0)
 let passwordData = password.dataUsingEncoding(NSUTF8StringEncoding)!

 let derivationStatus = CCKeyDerivationPBKDF(
 CCPBKDFAlgorithm(kCCPBKDF2),
 UnsafePointer<Int8>(passwordData.bytes), passwordData.length,
 UnsafePointer<UInt8>(salt), salt.count,
 CCPseudoRandomAlgorithm(hash),
 rounds,
 UnsafeMutablePointer<UInt8>(derivedKey),
 derivedKey.count)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 268

 if (derivationStatus != 0) {
 print("Error: \(derivationStatus)")
 return nil;
 }

 return derivedKey
}

Example usage:

let password = "password"
// let salt = [UInt8]("saltData".utf8)
let salt = [UInt8]([0x73, 0x61, 0x6c, 0x74, 0x44, 0x61, 0x74, 0x61])
let rounds = 100_000
let keyCount = 16

let derivedKey = pbkdf2SHA1(password, salt:salt, keyCount:keyCount, rounds:rounds)
print("derivedKey (SHA1): \(NSData(bytes:derivedKey!, length:derivedKey!.count))")

Example Output:

derivedKey (SHA1): <6b9d4fa3 0385d128 f6d196ee 3f1d6dbf>

Section 57.3: Password Based Key Derivation Calibration
(Swift 2.3)
See Swift 3 example for usage information and notes

func pbkdf2SHA1Calibrate(password:String, salt:[UInt8], msec:Int) -> UInt32 {
 let actualRoundCount: UInt32 = CCCalibratePBKDF(
 CCPBKDFAlgorithm(kCCPBKDF2),
 password.utf8.count,
 salt.count,
 CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA1),
 kCCKeySizeAES256,
 UInt32(msec));
 return actualRoundCount
}

Example usage:

let saltData = [UInt8]([0x73, 0x61, 0x6c, 0x74, 0x44, 0x61, 0x74, 0x61])
let passwordString = "password"
let delayMsec = 100

let rounds = pbkdf2SHA1Calibrate(passwordString, salt:saltData, msec:delayMsec)
print("For \(delayMsec) msec delay, rounds: \(rounds)")

Example Output:

For 100 msec delay, rounds: 94339

Section 57.4: Password Based Key Derivation Calibration

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 269

(Swift 3)
Determine the number of PRF rounds to use for a specific delay on the current platform.

Several parameters are defaulted to representative values that should not materially affect the round count.

password Sample password.
salt Sample salt.
msec Targeted duration we want to achieve for a key derivation.

returns The number of iterations to use for the desired processing time.

func pbkdf2SHA1Calibrate(password: String, salt: Data, msec: Int) -> UInt32 {
 let actualRoundCount: UInt32 = CCCalibratePBKDF(
 CCPBKDFAlgorithm(kCCPBKDF2),
 password.utf8.count,
 salt.count,
 CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA1),
 kCCKeySizeAES256,
 UInt32(msec));
 return actualRoundCount
}

Example usage:

let saltData = Data(bytes: [0x73, 0x61, 0x6c, 0x74, 0x44, 0x61, 0x74, 0x61])
let passwordString = "password"
let delayMsec = 100

let rounds = pbkdf2SHA1Calibrate(password:passwordString, salt:saltData, msec:delayMsec)
print("For \(delayMsec) msec delay, rounds: \(rounds)")

Example Output:

For 100 msec delay, rounds: 93457

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 270

Chapter 58: Logging in Swift
Section 58.1: dump
dump prints the contents of an object via reflection (mirroring).

Detailed view of an array:

let names = ["Joe", "Jane", "Jim", "Joyce"]
dump(names)

Prints:

▿ 4 elements
- [0]: Joe
- [1]: Jane
- [2]: Jim
- [3]: Joyce

For a dictionary:

let attributes = ["foo": 10, "bar": 33, "baz": 42]
dump(attributes)

Prints:

▿ 3 key/value pairs
▿ [0]: (2 elements)
- .0: bar
- .1: 33
▿ [1]: (2 elements)
- .0: baz
- .1: 42
▿ [2]: (2 elements)
- .0: foo
- .1: 10

dump is declared as dump(_:name:indent:maxDepth:maxItems:).

The first parameter has no label.

There's other parameters available, like name to set a label for the object being inspected:

dump(attributes, name: "mirroring")

Prints:

▿ mirroring: 3 key/value pairs
▿ [0]: (2 elements)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 271

- .0: bar
- .1: 33
▿ [1]: (2 elements)
- .0: baz
- .1: 42
▿ [2]: (2 elements)
- .0: foo
- .1: 10

You can also choose to print only a certain number of items with maxItems:, to parse the object up to a certain
depth with maxDepth:, and to change the indentation of printed objects with indent:.

Section 58.2: Debug Print
Debug Print shows the instance representation that is most suitable for debugging.

print("Hello")
debugPrint("Hello")

let dict = ["foo": 1, "bar": 2]

print(dict)
debugPrint(dict)

Yields

>>> Hello
>>> "Hello"
>>> [foo: 1, bar: 2]
>>> ["foo": 1, "bar": 2]

This extra information can be very important, for example:

let wordArray = ["foo", "bar", "food, bars"]

print(wordArray)
debugPrint(wordArray)

Yields

>>> [foo, bar, food, bars]
>>> ["foo", "bar", "food, bars"]

Notice how in the first output it appears that there are 4 elements in the array as opposed to 3. For reasons like
this, it is preferable when debugging to use debugPrint

Updating a classes debug and print values
struct Foo: Printable, DebugPrintable {
 var description: String {return "Clear description of the object"}
 var debugDescription: String {return "Helpful message for debugging"}
}

var foo = Foo()

print(foo)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 272

debugPrint(foo)

>>> Clear description of the object
>>> Helpful message for debugging

Section 58.3: print() vs dump()
Many of us start debugging with simple print(). Let's say we have such a class:

class Abc {
 let a = "aa"
 let b = "bb"
}

and we have an instance of Abc as so:

let abc = Abc()

When we run the print() on the variable, the output is

App.Abc

while dump() outputs

App.Abc #0
- a: "aa"
- b: "bb"

As seen, dump() outputs the whole class hierarchy, while print() simply outputs the class name.

Therefore, dump() is especially useful for UI debugging

let view = UIView(frame: CGRect(x: 0, y: 0, width: 100, height: 100))

With dump(view) we get:

 - <UIView: 0x108a0cde0; frame = (0 0; 100 100); layer = <CALayer: 0x159340cb0>> #0
 - super: UIResponder
 - NSObject

While print(view) we get:

<UIView: 0x108a0cde0; frame = (0 0; 100 100); layer = <CALayer: 0x159340cb0>>

There is more info on the class with dump(), and so it is more useful in debugging the class itself.

Section 58.4: print vs NSLog
In swift we can use both print() and NSLog() functions to print something on Xcode console.

But there are lot of differences in print() and NSLog() functions, such as:

1 TimeStamp: NSLog() will print timestamp along with the string we passed to it, but print() will not print
timestamp.
e.g.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 273

let array = [1, 2, 3, 4, 5]
print(array)
NSLog(array.description)

Output:

[1, 2, 3, 4, 5]
2017-05-31 13:14:38.582 ProjetName[2286:7473287] [1, 2, 3, 4, 5]

It'll also print ProjectName along with timestamp.

2 Only String: NSLog() only takes String as an input, but print() can print any type of input passed to it.
e.g.

let array = [1, 2, 3, 4, 5]
print(array) //prints [1, 2, 3, 4, 5]
NSLog(array) //error: Cannot convert value of type [Int] to expected argument type 'String'

3 Performance: NSLog() function is very slow compare to print() function.

4 Synchronization: NSLog() handles simultaneous usage from multi-threading environment and prints output
without overlapping it. But print() will not handle such cases and jumbles while prating output.

5 Device Console: NSLog() outputs on device console also, we can see this output by connecting our device to
Xcode. print() will not print output to device's console.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 274

Chapter 59: Memory Management
This topic outlines how and when the Swift runtime shall allocate memory for application data structures, and when
that memory shall be reclaimed. By default, the memory backing class instances is managed through reference
counting. The structures are always passed through copying. To opt out of the built-in memory management
scheme, one could use [Unmanaged][1] structure. [1]: https://developer.apple.com/reference/swift/unmanaged

Section 59.1: Reference Cycles and Weak References
A reference cycle (or retain cycle) is so named because it indicates a cycle in the object graph:

Each arrow indicates one object retaining another (a strong reference). Unless the cycle is broken, the memory for
these objects will never be freed.

A retain cycle is created when two instances of classes reference each other:

class A { var b: B? = nil }
class B { var a: A? = nil }

let a = A()
let b = B()

a.b = b // a retains b
b.a = a // b retains a -- a reference cycle

Both instances they will live on until the program terminates. This is a retain cycle.

Weak References

To avoid retain cycles, use the keyword weak or unowned when creating references to break retain cycles.

class B { var a: A? = nil }

https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Object_graph
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 275

Weak or unowned references will not increase the reference count of an instance. These references don't
contribute to retain cycles. The weak reference becomes nil when the object it references is deallocated.

a.b = b // a retains b
b.a = a // b holds a weak reference to a -- not a reference cycle

When working with closures, you can also use weak and unowned in capture lists.

Section 59.2: Manual Memory Management
When interfacing with C APIs, one might want to back off Swift reference counter. Doing so is achieved with
unmanaged objects.

If you need to supply a type-punned pointer to a C function, use toOpaque method of the Unmanaged structure to
obtain a raw pointer, and fromOpaque to recover the original instance:

setupDisplayLink() {
 let pointerToSelf: UnsafeRawPointer = Unmanaged.passUnretained(self).toOpaque()
 CVDisplayLinkSetOutputCallback(self.displayLink, self.redraw, pointerToSelf)
}

func redraw(pointerToSelf: UnsafeRawPointer, /* args omitted */) {
 let recoveredSelf = Unmanaged<Self>.fromOpaque(pointerToSelf).takeUnretainedValue()
 recoveredSelf.doRedraw()
}

Note that, if using passUnretained and counterparts, it's necessary to take all precautions as with unowned
references.

To interact with legacy Objective-C APIs, one might want to manually affect reference count of a certain object. For
that Unmanaged has respective methods retain and release. Nonetheless, it is more desired to use passRetained
and takeRetainedValue, which perform retaining before returning the result:

func preferredFilenameExtension(for uti: String) -> String! {
 let result = UTTypeCopyPreferredTagWithClass(uti, kUTTagClassFilenameExtension)
 guard result != nil else { return nil }

 return result!.takeRetainedValue() as String
}

These solutions should always be the last resort, and language-native APIs sould always be preferred.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 276

Chapter 60: Performance
Section 60.1: Allocation Performance
In Swift, memory management is done for you automatically using Automatic Reference Counting. (See Memory
Management) Allocation is the process of reserving a spot in memory for an object, and in Swift understanding the
performance of such requires some understanding of the heap and the stack. The heap is a memory location
where most objects get placed, and you may think of it as a storage shed. The stack, on the other hand, is a call
stack of functions that have led to the current execution. (Hence, a stack trace is a sort of printout of the functions
on the call stack.)

Allocating and deallocating from the stack is a very efficient operation, however in comparison heap allocation is
costly. When designing for performance, you should keep this in mind.

Classes:

class MyClass {

 let myProperty: String

}

Classes in Swift are reference types and therefore several things happen. First, the actual object will be allocated
onto the heap. Then, any references to that object must be added to the stack. This makes classes a more
expensive object for allocation.

Structs:

struct MyStruct {

 let myProperty: Int

}

Because structs are value types and therefore copied when passed around, they are allocated on the stack. This
makes structs more efficient than classes, however, if you do need a notion of identity and/or reference semantics,
a struct cannot provide you with those things.

Warning about structs with Strings and properties that are classes

While structs are generally cheeper than classes, you should be careful about structs with properties that are
classes:

struct MyStruct {

 let myProperty: MyClass

}

Here, due to reference counting and other factors, the performance is now more similar to a class. Further, if more
than one property in the struct is a class, the performance impact may be even more negative than if the struct
were a class instead.

Also, while Strings are structs, they internally store their characters on the heap, so are more expensive than most

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 277

structs.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 278

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

4444 Chapter 23
Abdul Yasin Chapter 43
Accepted Answer Chapters 7, 17, 42 and 59
Adam Bardon Chapter 58
Adda_25 Chapter 32
Ahmad F Chapter 52
Ajith R Nayak Chapter 18
Ajwhiteway Chapter 12
AK1 Chapters 9, 12 and 14
Alessandro Chapter 23
Alessandro Orrù Chapter 33
Alex Popov Chapter 8
Alexander Olferuk Chapter 40
AMAN77 Chapter 52
Anand Nimje Chapter 21
Andrea Antonioni Chapter 4
Andreas Chapter 5
Andrey Gordeev Chapter 22
Andy Ibanez Chapter 18
andyvn22 Chapter 21
antonio081014 Chapter 4
Asdrubal Chapters 27 and 28
AstroCB Chapter 4
atxe Chapter 14
Avi Chapter 8
avismara Chapter 25
Axe Chapter 4
Bartłomiej Semańczyk Chapter 44
Ben Trengrove Chapter 6
brduca Chapters 14, 19, 30 and 52
Caleb Kleveter Chapters 4, 7, 13, 16, 18 and 44
Christopher Oezbek Chapter 2
Cory Wilhite Chapter 17
ctietze Chapter 29
Cyril Ivar Garcia Chapter 24
D31 Chapter 16
D4ttatraya Chapters 6, 44 and 58
Dalija Prasnikar Chapters 10 and 17
DanHabib Chapter 58
DarkDust Chapters 6, 14 and 22
David Chapter 19
Diogo Antunes Chapters 8, 9 and 11
Duncan C Chapters 12 and 29
Echelon Chapters 34 and 39
egor.zhdan Chapters 4 and 15
elprl Chapter 12
Esqarrouth Chapter 19

mailto:web@petercv.com
https://stackoverflow.com/users/1464444/
https://stackoverflow.com/users/2318226/
https://stackoverflow.com/users/6628341/
https://stackoverflow.com/users/2374802/
https://stackoverflow.com/users/5148377/
https://stackoverflow.com/users/5501940/
https://stackoverflow.com/users/1835803/
https://stackoverflow.com/users/1628385/
https://stackoverflow.com/users/6495570/
https://stackoverflow.com/users/4541396/
https://stackoverflow.com/users/1752662/
https://stackoverflow.com/users/2905195/
https://stackoverflow.com/users/6653715/
https://stackoverflow.com/users/797598/
https://stackoverflow.com/users/4803556/
https://stackoverflow.com/users/5744633/
https://stackoverflow.com/users/6817323/
https://stackoverflow.com/users/1321917/
https://stackoverflow.com/users/648767/
https://stackoverflow.com/users/151471/
https://stackoverflow.com/users/411604/
https://stackoverflow.com/users/1176706/
https://stackoverflow.com/users/3366929/
https://stackoverflow.com/users/621264/
https://stackoverflow.com/users/1003093/
https://stackoverflow.com/users/1950419/
https://stackoverflow.com/users/705471/
https://stackoverflow.com/users/2725435/
https://stackoverflow.com/users/2725435/
https://stackoverflow.com/users/2725435/
https://stackoverflow.com/users/2725435/
https://stackoverflow.com/users/2725435/
https://stackoverflow.com/users/616971/
https://stackoverflow.com/users/3488526/
https://stackoverflow.com/users/5236226/
https://stackoverflow.com/users/278842/
https://stackoverflow.com/users/2900820/
https://stackoverflow.com/users/1460929/
https://stackoverflow.com/users/4015879/
https://stackoverflow.com/users/7633722/
https://stackoverflow.com/users/5546312/
https://stackoverflow.com/users/4267244/
https://stackoverflow.com/users/3537361/
https://stackoverflow.com/users/400056/
https://stackoverflow.com/users/5230046/
https://stackoverflow.com/users/2694525/
https://stackoverflow.com/users/205185/
https://stackoverflow.com/users/337392/
https://stackoverflow.com/users/1796907/
https://stackoverflow.com/users/835786/
https://stackoverflow.com/users/2589276/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 279

esthepiking Chapters 1 and 17
Fangming Ning Chapter 50
Fattie Chapter 31
Feldur Chapter 4
FelixSFD Chapters 2, 28, 30 and 32
Ferenc Kiss Chapter 1
Fred Faust Chapters 16 and 33
fredpi Chapter 9
Glenn R. Fisher Chapters 22 and 24
godisgood4 Chapter 21
Govind Rai Chapter 4
Guilherme Torres Castro Chapter 4
Hady Nourallah Chapters 39 and 47
Hamish Chapters 4, 6, 8, 13, 14, 16, 17, 22, 25 and 29
HariKrishnan.P Chapter 4
HeMet Chapter 4
Ian Rahman Chapters 24, 52 and 53
iBelieve Chapter 17
Idan Chapter 16
Intentss Chapter 25
iOSDevCenter Chapter 11
Jack Chorley Chapter 24
JAL Chapters 4, 25, 26, 31 and 32
Jason Bourne Chapter 15
Jeff Lewis Chapter 16
Jim Chapter 1
joan Chapter 12
Jojodmo Chapters 2, 4, 7, 13, 19, 22 and 29
Josh Brown Chapter 9
JPetric Chapter 45
jtbandes Chapters 1, 3, 4, 5, 6, 8, 14, 15, 17, 18, 19, 20, 24, 29 and 42
juanjo Chapters 8 and 13
kabiroberai Chapters 4 and 33
kennytm Chapter 25
Kevin Chapters 5, 6 and 9
Kirit Modi Chapter 11
Kote Chapter 18
Koushik Chapter 11
Kumar Vivek Mitra Chapter 35
Kyle KIM Chapter 4
Lope Chapter 4
LopSae Chapters 4, 21 and 29
lostAtSeaJoshua Chapter 24
Luca Angeletti Chapters 1, 4, 6, 7, 9, 10, 12, 16, 18 and 34
Luca Angioloni Chapter 1
Luca D'Alberti Chapters 22 and 24
Luke Chapter 2
LukeSideWalker Chapters 4 and 32
Mahmoud Adam Chapter 4
Marcus Rossel Chapter 9
Mark Chapter 42
Martin Delille Chapter 43
Matt Chapters 20, 36 and 56

https://stackoverflow.com/users/866149/
https://stackoverflow.com/users/5838902/
https://stackoverflow.com/users/294884/
https://stackoverflow.com/users/348384/
https://stackoverflow.com/users/4687348/
https://stackoverflow.com/users/2090772/
https://stackoverflow.com/users/4096655/
https://stackoverflow.com/users/4355141/
https://stackoverflow.com/users/1519343/
https://stackoverflow.com/users/6557303/
https://stackoverflow.com/users/2757916/
https://stackoverflow.com/users/1107651/
https://stackoverflow.com/users/1485833/
https://stackoverflow.com/users/2976878/
https://stackoverflow.com/users/2894844/
https://stackoverflow.com/users/1434829/
https://stackoverflow.com/users/6200684/
https://stackoverflow.com/users/1917313/
https://stackoverflow.com/users/5099208/
https://stackoverflow.com/users/160917/
https://stackoverflow.com/users/6623424/
https://stackoverflow.com/users/3723945/
https://stackoverflow.com/users/2415822/
https://stackoverflow.com/users/5408958/
https://stackoverflow.com/users/5104126/
https://stackoverflow.com/users/2731526/
https://stackoverflow.com/users/836850/
https://stackoverflow.com/users/2767207/
https://stackoverflow.com/users/2030/
https://stackoverflow.com/users/515147/
https://stackoverflow.com/users/23649/
https://stackoverflow.com/users/2027279/
https://stackoverflow.com/users/3769927/
https://stackoverflow.com/users/224671/
https://stackoverflow.com/users/1916845/
https://stackoverflow.com/users/2530594/
https://stackoverflow.com/users/187668/
https://stackoverflow.com/users/4065570/
https://stackoverflow.com/users/1293744/
https://stackoverflow.com/users/3732297/
https://stackoverflow.com/users/124649/
https://stackoverflow.com/users/214373/
https://stackoverflow.com/users/3080959/
https://stackoverflow.com/users/1761687/
https://stackoverflow.com/users/6782589/
https://stackoverflow.com/users/3461718/
https://stackoverflow.com/users/1320911/
https://stackoverflow.com/users/3143890/
https://stackoverflow.com/users/1190861/
https://stackoverflow.com/users/3208492/
https://stackoverflow.com/users/151019/
https://stackoverflow.com/users/118125/
https://stackoverflow.com/users/2131377/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 280

matt.baranowski Chapter 17
Matthew Seaman Chapters 4, 8, 17, 25, 29, 32 and 60
Max Desiatov Chapter 4
maxkonovalov Chapter 24
Maysam Chapter 49
Mehul Sojitra Chapter 15
Michaël Azevedo Chapter 13
Moritz Chapters 4, 6, 7, 13, 15, 19, 24, 41 and 58
Moriya Chapter 6
Mr. Xcoder Chapter 16
M_G Chapter 32
Nate Cook Chapter 4
Nathan Kellert Chapters 7, 8 and 13
Nick Podratz Chapters 8 and 21
Nikolai Ruhe Chapters 4 and 8
Noam Chapter 26
noor Chapter 18
Oleg Danu Chapter 17
orccrusher99 Chapter 25
pableiros Chapters 5 and 6
Palle Chapters 32, 37, 38 and 59
Panda Chapter 4
Paulw11 Chapter 13
pixatlazaki Chapter 4
Rahul Chapter 17
Rick Pasveer Chapter 7
Rob Chapter 32
Rob Napier Chapter 9
Ronald Martin Chapter 7
RubberDucky4444 Chapter 51
Ryan H. Chapters 20 and 38
saagarjha Chapters 6, 11 and 18
Sagar Thummar Chapter 48
Sajjon Chapter 27
Santa Claus Chapters 2, 12, 30 and 32
sasquatch Chapter 11
sdasdadas Chapter 4
SeanRobinson159 Chapters 8 and 17
Seyyed Parsa Neshaei Chapter 1
shannoga Chapters 8 and 13
Shijing Lv Chapter 34
shim Chapter 4
SKOOP Chapters 13 and 17
solidcell Chapter 4
Sơn Đỗ Đình Thy Chapter 52
SteBra Chapter 47
Steve Moser Chapter 10
Suneet Tipirneni Chapters 11 and 22
Sunil Prajapati Chapter 1
Sunil Sharma Chapter 4
Suragch Chapters 3 and 4
Tanner Chapters 1 and 13
taylor swift Chapter 4

https://stackoverflow.com/users/1072335/
https://stackoverflow.com/users/5062846/
https://stackoverflow.com/users/442427/
https://stackoverflow.com/users/3160561/
https://stackoverflow.com/users/689779/
https://stackoverflow.com/users/3003353/
https://stackoverflow.com/users/1878781/
https://stackoverflow.com/users/2227743/
https://stackoverflow.com/users/1891013/
https://stackoverflow.com/users/6272142/
https://stackoverflow.com/users/2099148/
https://stackoverflow.com/users/59541/
https://stackoverflow.com/users/1314846/
https://stackoverflow.com/users/3858517/
https://stackoverflow.com/users/104790/
https://stackoverflow.com/users/3635734/
https://stackoverflow.com/users/5358255/
https://stackoverflow.com/users/491280/
https://stackoverflow.com/users/3524867/
https://stackoverflow.com/users/3701102/
https://stackoverflow.com/users/2557145/
https://stackoverflow.com/users/5022249/
https://stackoverflow.com/users/3418066/
https://stackoverflow.com/users/3839114/
https://stackoverflow.com/users/2577337/
https://stackoverflow.com/users/2071718/
https://stackoverflow.com/users/1271826/
https://stackoverflow.com/users/97337/
https://stackoverflow.com/users/4499783/
https://stackoverflow.com/users/2640633/
https://stackoverflow.com/users/4748172/
https://stackoverflow.com/users/5230900/
https://stackoverflow.com/users/4786387/
https://stackoverflow.com/users/1311272/
https://stackoverflow.com/users/2446155/
https://stackoverflow.com/users/3207014/
https://stackoverflow.com/users/904316/
https://stackoverflow.com/users/5774551/
https://stackoverflow.com/users/4915882/
https://stackoverflow.com/users/358480/
https://stackoverflow.com/users/1431641/
https://stackoverflow.com/users/1032372/
https://stackoverflow.com/users/2897755/
https://stackoverflow.com/users/343299/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/7273492/
https://stackoverflow.com/users/2363911/
https://stackoverflow.com/users/142358/
https://stackoverflow.com/users/2651356/
https://stackoverflow.com/users/6638996/
https://stackoverflow.com/users/3743875/
https://stackoverflow.com/users/3681880/
https://stackoverflow.com/users/1761990/
https://stackoverflow.com/users/6451264/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Swift™ Notes for Professionals 281

ThaNerd Chapter 14
Thorax Chapter 52
ThrowingSpoon Chapters 6, 11, 12, 18 and 39
Timothy Rascher Chapter 29
tktsubota Chapters 2, 7, 13, 14 and 20
Tom Magnusson Chapter 15
tomahh Chapter 6
Tommie C. Chapters 47 and 54
torinpitchers Chapter 14
Umberto Raimondi Chapter 26
Undo Chapter 17
user3480295 Chapters 4 and 8
user5389107 Chapter 4
vacawama Chapter 6
Victor Sigler Chapters 4, 17 and 40
Viktor Gardart Chapter 46
Vinupriya Arivazhagan Chapters 4 and 30
Vladimir Nul Chapter 6
WMios Chapter 4
xoudini Chapter 16
Zack Chapter 20
zaph Chapters 55, 56 and 57
ZGski Chapters 3 and 18
��ʀ����ɴ Chapter 1

https://stackoverflow.com/users/324183/
https://stackoverflow.com/users/2659973/
https://stackoverflow.com/users/943544/
https://stackoverflow.com/users/6620916/
https://stackoverflow.com/users/5644794/
https://stackoverflow.com/users/4531028/
https://stackoverflow.com/users/1173513/
https://stackoverflow.com/users/608991/
https://stackoverflow.com/users/6354973/
https://stackoverflow.com/users/1155984/
https://stackoverflow.com/users/1849664/
https://stackoverflow.com/users/3480295/
https://stackoverflow.com/users/5389107/
https://stackoverflow.com/users/1630618/
https://stackoverflow.com/users/2695387/
https://stackoverflow.com/users/2376786/
https://stackoverflow.com/users/1894000/
https://stackoverflow.com/users/4200050/
https://stackoverflow.com/users/3830876/
https://stackoverflow.com/users/5389870/
https://stackoverflow.com/users/6567876/
https://stackoverflow.com/users/451475/
https://stackoverflow.com/users/4577897/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://stackoverflow.com/users/6714194/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/CBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/CPlusPlusBook
https://goalkicker.com/iOSBook
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaScriptBook
https://goalkicker.com/ObjectiveCBook
https://goalkicker.com/PythonBook
https://goalkicker.com/RubyBook

	Content list
	About
	Chapter 1: Getting started with Swift Language
	Section 1.1: Your ﬁrst Swift program
	Section 1.2: Your ﬁrst program in Swift on a Mac (using a Playground)
	Section 1.3: Your ﬁrst program in Swift Playgrounds app on iPad
	Section 1.4: Installing Swift
	Section 1.5: Optional Value and Optional enum

	Chapter 2: Variables & Properties
	Section 2.1: Creating a Variable
	Section 2.2: Property Observers
	Section 2.3: Lazy Stored Properties
	Section 2.4: Property Basics
	Section 2.5: Computed Properties
	Section 2.6: Local and Global Variables
	Section 2.7: Type Properties

	Chapter 3: Numbers
	Section 3.1: Number types and literals
	Section 3.2: Convert numbers to/from strings
	Section 3.3: Rounding
	Section 3.4: Random number generation
	Section 3.5: Convert one numeric type to another
	Section 3.6: Exponentiation

	Chapter 4: Strings and Characters
	Section 4.1: String & Character Literals
	Section 4.2: Concatenate strings
	Section 4.3: String Encoding and Decomposition
	Section 4.4: Examine and compare strings
	Section 4.5: Reversing Strings
	Section 4.6: Check if String contains Characters from a Deﬁned Set
	Section 4.7: String Iteration
	Section 4.8: Splitting a String into an Array
	Section 4.9: Unicode
	Section 4.10: Converting Swift string to a number type
	Section 4.11: Convert String to and from Data / NSData
	Section 4.12: Formatting Strings
	Section 4.13: Uppercase and Lowercase Strings
	Section 4.14: Remove characters from a string not deﬁned in Set
	Section 4.15: Count occurrences of a Character into a String
	Section 4.16: Remove leading and trailing WhiteSpace and NewLine

	Chapter 5: Booleans
	Section 5.1: What is Bool?
	Section 5.2: Booleans and Inline Conditionals
	Section 5.3: Boolean Logical Operators
	Section 5.4: Negate a Bool with the preﬁx ! operator

	Chapter 6: Arrays
	Section 6.1: Basics of Arrays
	Section 6.2: Extracting values of a given type from an Array with ﬂatMap(_:)
	Section 6.3: Combining an Array's elements with reduce(_:combine:)
	Section 6.4: Flattening the result of an Array transformation with ﬂatMap(_:)
	Section 6.5: Lazily ﬂattening a multidimensional Array with ﬂatten()
	Section 6.6: Filtering out nil from an Array transformation with ﬂatMap(_:)
	Section 6.7: Subscripting an Array with a Range
	Section 6.8: Removing element from an array without knowing it's index
	Section 6.9: Sorting an Array of Strings
	Section 6.10: Accessing indices safely
	Section 6.11: Filtering an Array
	Section 6.12: Transforming the elements of an Array with map(_:)
	Section 6.13: Useful Methods
	Section 6.14: Sorting an Array
	Section 6.15: Finding the minimum or maximum element of an Array
	Section 6.16: Modifying values in an array
	Section 6.17: Comparing 2 Arrays with zip
	Section 6.18: Grouping Array values
	Section 6.19: Value Semantics
	Section 6.20: Accessing Array Values

	Chapter 7: Tuples
	Section 7.1: What are Tuples?
	Section 7.2: Decomposing into individual variables
	Section 7.3: Tuples as the Return Value of Functions
	Section 7.4: Using a typealias to name your tuple type
	Section 7.5: Swapping values
	Section 7.6: Tuples as Case in Switch

	Chapter 8: Enums
	Section 8.1: Basic enumerations
	Section 8.2: Enums with associated values
	Section 8.3: Indirect payloads
	Section 8.4: Raw and Hash values
	Section 8.5: Initializers
	Section 8.6: Enumerations share many features with classes and structures
	Section 8.7: Nested Enumerations

	Chapter 9: Structs
	Section 9.1: Structs are value types
	Section 9.2: Accessing members of struct
	Section 9.3: Basics of Structs
	Section 9.4: Mutating a Struct
	Section 9.5: Structs cannot inherit

	Chapter 10: Sets
	Section 10.1: Declaring Sets
	Section 10.2: Performing operations on sets
	Section 10.3: CountedSet
	Section 10.4: Modifying values in a set
	Section 10.5: Checking whether a set contains a value
	Section 10.6: Adding values of my own type to a Set

	Chapter 11: Dictionaries
	Section 11.1: Declaring Dictionaries
	Section 11.2: Accessing Values
	Section 11.3: Change Value of Dictionary using Key
	Section 11.4: Get all keys in Dictionary
	Section 11.5: Modifying Dictionaries
	Section 11.6: Merge two dictionaries

	Chapter 12: Switch
	Section 12.1: Switch and Optionals
	Section 12.2: Basic Use
	Section 12.3: Matching a Range
	Section 12.4: Partial matching
	Section 12.5: Using the where statement in a switch
	Section 12.6: Matching Multiple Values
	Section 12.7: Switch and Enums
	Section 12.8: Switches and tuples
	Section 12.9: Satisfy one of multiple constraints using switch
	Section 12.10: Matching based on class - great for prepareForSegue
	Section 12.11: Switch fallthroughs

	Chapter 13: Optionals
	Section 13.1: Types of Optionals
	Section 13.2: Unwrapping an Optional
	Section 13.3: Nil Coalescing Operator
	Section 13.4: Optional Chaining
	Section 13.5: Overview - Why Optionals?

	Chapter 14: Conditionals
	Section 14.1: Optional binding and "where" clauses
	Section 14.2: Using Guard
	Section 14.3: Basic conditionals: if-statements
	Section 14.4: Ternary operator
	Section 14.5: Nil-Coalescing Operator

	Chapter 15: Error Handling
	Section 15.1: Error handling basics
	Section 15.2: Catching dierent error types
	Section 15.3: Catch and Switch Pattern for Explicit Error Handling
	Section 15.4: Disabling Error Propagation
	Section 15.5: Create custom Error with localized description

	Chapter 16: Loops
	Section 16.1: For-in loop
	Section 16.2: Repeat-while loop
	Section 16.3: For-in loop with ﬁltering
	Section 16.4: Sequence Type forEach block
	Section 16.5: while loop
	Section 16.6: Breaking a loop

	Chapter 17: Protocols
	Section 17.1: Protocol Basics
	Section 17.2: Delegate pattern
	Section 17.3: Associated type requirements
	Section 17.4: Class-Only Protocols
	Section 17.5: Protocol extension for a speciﬁc conforming class
	Section 17.6: Using the RawRepresentable protocol (Extensible Enum)
	Section 17.7: Implementing Hashable protocol

	Chapter 18: Functions
	Section 18.1: Basic Use
	Section 18.2: Functions with Parameters
	Section 18.3: Subscripts
	Section 18.4: Methods
	Section 18.5: Variadic Parameters
	Section 18.6: Operators are Functions
	Section 18.7: Passing and returning functions
	Section 18.8: Function types
	Section 18.9: Inout Parameters
	Section 18.10: Throwing Errors
	Section 18.11: Returning Values
	Section 18.12: Trailing Closure Syntax
	Section 18.13: Functions With Closures

	Chapter 19: Extensions
	Section 19.1: What are Extensions?
	Section 19.2: Variables and functions
	Section 19.3: Initializers in Extensions
	Section 19.4: Subscripts
	Section 19.5: Protocol extensions
	Section 19.6: Restrictions
	Section 19.7: What are extensions and when to use them

	Chapter 20: Classes
	Section 20.1: Deﬁning a Class
	Section 20.2: Properties and Methods
	Section 20.3: Reference Semantics
	Section 20.4: Classes and Multiple Inheritance
	Section 20.5: deinit

	Chapter 21: Type Casting
	Section 21.1: Downcasting
	Section 21.2: Type casting in Swift Language
	Section 21.3: Upcasting
	Section 21.4: Example of using a downcast on a function parameter involving subclassing
	Section 21.5: Casting with switch

	Chapter 22: Generics
	Section 22.1: The Basics of Generics
	Section 22.2: Constraining Generic Placeholder Types
	Section 22.3: Generic Class Examples
	Section 22.4: Using Generics to Simplify Array Functions
	Section 22.5: Advanced Type Constraints
	Section 22.6: Generic Class Inheritance
	Section 22.7: Use generics to enhance type-safety

	Chapter 23: OptionSet
	Section 23.1: OptionSet Protocol

	Chapter 24: Reading & Writing JSON
	Section 24.1: JSON Serialization, Encoding, and Decoding with Apple Foundation and the Swift Standard Library
	Section 24.2: SwiftyJSON
	Section 24.3: Freddy
	Section 24.4: JSON Parsing Swift 3
	Section 24.5: Simple JSON parsing into custom objects
	Section 24.6: Arrow

	Chapter 25: Advanced Operators
	Section 25.1: Bitwise Operators
	Section 25.2: Custom Operators
	Section 25.3: Overﬂow Operators
	Section 25.4: Commutative Operators
	Section 25.5: Overloading + for Dictionaries
	Section 25.6: Precedence of standard Swift operators

	Chapter 26: Method Swizzling
	Section 26.1: Extending UIViewController and Swizzling viewDidLoad
	Section 26.2: Basics of Swift Swizzling
	Section 26.3: Basics of Swizzling - Objective-C

	Chapter 27: Reﬂection
	Section 27.1: Basic Usage for Mirror
	Section 27.2: Getting type and names of properties for a class without having to instantiate it

	Chapter 28: Access Control
	Section 28.1: Basic Example using a Struct
	Section 28.2: Subclassing Example
	Section 28.3: Getters and Setters Example

	Chapter 29: Closures
	Section 29.1: Closure basics
	Section 29.2: Syntax variations
	Section 29.3: Passing closures into functions
	Section 29.4: Captures, strong/weak references, and retain cycles
	Section 29.5: Using closures for asynchronous coding
	Section 29.6: Closures and Type Alias

	Chapter 30: Initializers
	Section 30.1: Convenience init
	Section 30.2: Setting default property values
	Section 30.3: Customizing initialization with parameters
	Section 30.4: Throwable Initilizer

	Chapter 31: Associated Objects
	Section 31.1: Property, in a protocol extension, achieved using associated object

	Chapter 32: Concurrency
	Section 32.1: Obtaining a Grand Central Dispatch (GCD) queue
	Section 32.2: Concurrent Loops
	Section 32.3: Running tasks in a Grand Central Dispatch (GCD) queue
	Section 32.4: Running Tasks in an OperationQueue
	Section 32.5: Creating High-Level Operations

	Chapter 33: Getting Started with Protocol Oriented Programming
	Section 33.1: Using protocols as ﬁrst class types
	Section 33.2: Leveraging Protocol Oriented Programming for Unit Testing

	Chapter 34: Functional Programming in Swift
	Section 34.1: Extracting a list of names from a list of Person(s)
	Section 34.2: Traversing
	Section 34.3: Filtering
	Section 34.4: Using Filter with Structs
	Section 34.5: Projecting

	Chapter 35: Function as ﬁrst class citizens in Swift
	Section 35.1: Assigning function to a variable
	Section 35.2: Passing function as an argument to another function, thus creating a Higher-Order Function
	Section 35.3: Function as return type from another function

	Chapter 36: Blocks
	Section 36.1: Non-escaping closure
	Section 36.2: Escaping closure

	Chapter 37: The Defer Statement
	Section 37.1: When to use a defer statement
	Section 37.2: When NOT to use a defer statement

	Chapter 38: Style Conventions
	Section 38.1: Fluent Usage
	Section 38.2: Clear Usage
	Section 38.3: Capitalization

	Chapter 39: NSRegularExpression in Swift
	Section 39.1: Extending String to do simple pattern matching
	Section 39.2: Basic Usage
	Section 39.3: Replacing Substrings
	Section 39.4: Special Characters
	Section 39.5: Validation
	Section 39.6: NSRegularExpression for mail validation

	Chapter 40: RxSwift
	Section 40.1: Disposing
	Section 40.2: RxSwift basics
	Section 40.3: Creating observables
	Section 40.4: Bindings
	Section 40.5: RxCocoa and ControlEvents

	Chapter 41: Swift Package Manager
	Section 41.1: Creation and usage of a simple Swift package

	Chapter 42: Working with C and Objective-C
	Section 42.1: Use a module map to import C headers
	Section 42.2: Using Objective-C classes from Swift code
	Section 42.3: Specify a bridging header to swiftc
	Section 42.4: Use the C standard library
	Section 42.5: Fine-grained interoperation between Objective-C and Swift
	Section 42.6: Using Swift classes from Objective-C code

	Chapter 43: Documentation markup
	Section 43.1: Class documentation
	Section 43.2: Documentation styles

	Chapter 44: Typealias
	Section 44.1: typealias for closures with parameters
	Section 44.2: typealias for empty closures
	Section 44.3: typealias for other types

	Chapter 45: Dependency Injection
	Section 45.1: Dependency Injection with View Controllers
	Section 45.2: Dependency Injection Types

	Chapter 46: Caching on disk space
	Section 46.1: Reading
	Section 46.2: Saving

	Chapter 47: Algorithms with Swift
	Section 47.1: Sorting
	Section 47.2: Insertion Sort
	Section 47.3: Selection sort
	Section 47.4: Asymptotic analysis
	Section 47.5: Quick Sort - O(n log n) complexity time
	Section 47.6: Graph, Trie, Stack

	Chapter 48: Swift Advance functions
	Section 48.1: Flatten multidimensional array
	Section 48.2: Introduction with advance functions

	Chapter 49: Completion Handler
	Section 49.1: Completion handler with no input argument
	Section 49.2: Completion handler with input argument

	Chapter 50: Swift HTTP server by Kitura
	Section 50.1: Hello world application

	Chapter 51: Generate UIImage of Initials from String
	Section 51.1: InitialsImageFactory

	Chapter 52: Design Patterns - Creational
	Section 52.1: Singleton
	Section 52.2: Builder Pattern
	Section 52.3: Factory Method
	Section 52.4: Observer
	Section 52.5: Chain of responsibility
	Section 52.6: Iterator

	Chapter 53: Design Patterns - Structural
	Section 53.1: Adapter
	Section 53.2: Facade

	Chapter 54: (Unsafe) Buer Pointers
	Section 54.1: UnsafeMutablePointer
	Section 54.2: Practical Use-Case for Buer Pointers

	Chapter 55: Cryptographic Hashing
	Section 55.1: HMAC with MD5, SHA1, SHA224, SHA256, SHA384, SHA512 (Swift 3)
	Section 55.2: MD2, MD4, MD5, SHA1, SHA224, SHA256, SHA384, SHA512 (Swift 3)

	Chapter 56: AES encryption
	Section 56.1: AES encryption in CBC mode with a random IV (Swift 3.0)
	Section 56.2: AES encryption in CBC mode with a random IV (Swift 2.3)
	Section 56.3: AES encryption in ECB mode with PKCS7 padding

	Chapter 57: PBKDF2 Key Derivation
	Section 57.1: Password Based Key Derivation 2 (Swift 3)
	Section 57.2: Password Based Key Derivation 2 (Swift 2.3)
	Section 57.3: Password Based Key Derivation Calibration (Swift 2.3)
	Section 57.4: Password Based Key Derivation Calibration (Swift 3)

	Chapter 58: Logging in Swift
	Section 58.1: dump
	Section 58.2: Debug Print
	Section 58.3: print() vs dump()
	Section 58.4: print vs NSLog

	Chapter 59: Memory Management
	Section 59.1: Reference Cycles and Weak References
	Section 59.2: Manual Memory Management

	Chapter 60: Performance
	Section 60.1: Allocation Performance

	Credits
	You may also like

